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Abstract

We consider a portfolio selection problem of a CRRA investor who faces a risk-
free bond and a kth-to-default Credit-Linked Note (CLN). In addition to multiple
default protections, the CLN may have both internal and external contagion risks,
and its dynamics is obtained under a Markov chain model. By the dynamical
programming principle, we characterize the value function as a unique classic
solution to a system of Hamilton-Jacobi-Bellman equations, each of which is
associated with a default or shock realization state. The optimal strategy is to
make the current marginal value of wealth equal the weighted average of the
risk-adjusted marginal value of wealth conditional on a default or shock realization,
where the weight is determined jointly by the jump size and intensity of CLN.
When all reference entities have the same characteristics and the external contagion
risk is absent, we prove that the investor will take long/short positions in the
CLN if the default risk compensation is positive/negative. Numerically, we find
that for a short investment horizon, an additional default protection leads to more
investments in the CLN. However, for a long investment horizon, the CLN’s early
termination compensation becomes more important and may make additional
default protection less attractive. This difference between short and long horizons
is more salient in the presence of internal and/or external contagion risks.
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1 Introduction

Merton (1969) pioneers the dynamic portfolio selection problems in continuous time.

Since then, a large body of literature has been devoted to various extensions of Merton’s

model. For example, for transaction cost problems, see Davis and Norman (1990); Shreve

and Soner (1994); Dai and Yi (2009); for tax problems, see Tahar, Soner, and Touzi

(2007, 2010); Dai, Liu, Yang, and Zhong (2015); Cai, Chen, and Dai (2017). Most studies

have been focused on the equity market but not the fixed-income market. According to

the report “Mapping Global Capital Markets 2011” released by the McKinsey Global

Institute, the fixed-income market is almost twice the capitalization of the equity market.

Moreover, the data from the National Association of Financial Market Institutional

Investor (NAFMII) shows that asset managers are the main purchasers of fixed-income

securities. A Credit-Linked Note (CLN) is structured as an ordinary fixed-income security

embedded with a Credit Default Swap (CDS), so its access threshold is relatively low.

As a result, CLNs are very popular in the fixed-income market and are the second-largest

credit derivatives in trading volume after CDS. In this paper, we consider a portfolio

selection problem for a constant relative risk aversion (CRRA) investor who allocates

her wealth between a risk-free bond and a kth-to-default CLN to maximize her expected

utility from the terminal wealth. Our main contributions are threefold as follows.

First, we highlight the multiple-default protection feature of a kth-to-default CLN as

well as internal contagion risks in the reference pool and external contagion risks. To

the best of our knowledge, it is the first time to add a CLN with these three features to

a portfolio selection problem. Following Bo and Capponi (2016), we use a continuous

time Markov chain to model the external shock realization and internal default states.

This Markovian nature leads to an explicit expression for the market value of the CLN

obtained as solutions to Feynman-Kac equations. By a change of measure, we further

obtain the dynamics of CLN in the physical measure.

Second, by the dynamical programming principle, we characterize the value function

of the portfolio selection problem as a unique classic solution to a system of Hamilton-

Jacobi-Bellman (HJB) equations, each of which is associated with a default or shock

realization state. The optimal investment strategy in the CLN is to make the current

marginal value of wealth equal the weighted average of the risk-adjusted marginal value

of wealth conditional on a default or shock realization, where the weight is determined

jointly by the jump size and intensity of CLN. In particular, when all reference entities

have identical characteristics and the external contagion risk is absent, we prove that
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the investor will take long/short positions in the CLN if the default risk compensation is

positive/negative.

Third, our numerical analysis shows that multiple-default protection has a significant

impact on investment strategies. More precisely, multiple-default protection can generate

a non-monotonic investment strategy in the CLN with respect to the investment horizon,

which is in sharp contrast to the monotonically decreasing pattern of the investment

strategy when there is only one-default protection as presented in Bielecki and Jang

(2006). For a short investment horizon, additional default protection leads to more

investments in the CLN. However, for a long investment horizon, the CLN’s early

termination compensation becomes more important and may make additional default

protection less attractive. This difference between short and long horizons is more

salient in the presence of internal and/or external contagion risks. Moreover, to further

quantify the value of additional default protection, we introduce a proportional certainty

equivalent wealth. On one hand, for ten reference entities, the value of additional default

protection drops quickly from over 18% of initial wealth to almost zero as the number of

protections increases from 2 to 4. On the other hand, the second-default protection value

increases from 1% to over 18% of initial wealth when the number of reference entities

increases from 2 to 10.

Related Literature. The most existing literature studying fixed-income portfolio

selection problems has focused on securities with only one-default protection, i.e., a

security will be terminated once a default event happens. One strand of this literature

is devoted to the portfolio selection problems with one or multiple defaultable bonds.

For example, Bielecki and Jang (2006) derive optimal investment strategies for a CRRA

investor, allocating her wealth among a defaultable bond, a risk-free bank account, and

a stock. Kraft and Steffensen (2008) consider an investor who can allocate her wealth

across multiple defaultable bonds. Other related works include Bielecki, Jeanblanc, and

Rutkowski (2008); Bo, Wang, and Yang (2010); Capponi and Figueroa-Lopez (2014) and

references therein. Recently studies have been extended to include credit derivatives.

Giesecke, Kim, Kim, and Tsoukalas (2014) study a static selection problem of credit

swaps portfolios to maximize an investor’s mark-to-market value of the portfolio. Bo and

Capponi (2016, 2017) consider the optimal portfolio problem of an investor who wishes

to allocate her wealth between several credit default swaps and a money market account.

Bo and Ceci (2020) considered an investor who, investing in a credit default swap with
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the counterparty risk, wants to protect herself against the loss incurred at the default of

the counterparty. Since a CLN is structured as a bond embedded with a CDS, our model

investigates these two markets in a unified way. More important and different from

the above studies, our focus is on the impact of multiple-default protection on optimal

investment strategies. In the absence of derivative markets, the multiple defaults are also

studied in Jiao, Kharroubi, and Pham (2013), where, using the density hypothesis, the

existence and uniqueness of the value function are established via recursive systems of

backward stochastic differential equations. In contrast, our model is solved by a system

of HJB equations.

Our paper is also related to the studies of contagion risks. Callegaro, Jeanblanc,

and Runggaldier (2012) consider the problem of maximization of expected utility from

terminal wealth with contagion risks under incomplete information. Bo and Capponi

(2016) develop a dynamic portfolio optimization framework for credit derivatives with

interacting default intensities via a continuous-time Markov chain model. Consistent with

the empirical findings in Azizpour, Giesecke, and Schwenkler (2018), Bo, Capponi, and

Chen (2019) developed a fixed-income portfolio framework to capture the exponential

decay of contagious intensities between successive default events. The above literature

examines the impact of contagion risks on multiple defaultable bonds or credit derivatives.

We complement their studies by focusing on the impact of contagion risks on the kth-to-

default CLN, which is a more complicated and hybrid fixed-income security.

The rest of the paper is organized as follows. In Section 2, we first briefly introduce

the CLN. Then, the CLN’s value and its dynamics are derived by using a continuous

Markov chain model. Section 3 is devoted to the setup of the portfolio selection problem

between a risk-free bond and a kth-to-default CLN. Theoretical analysis of the model

is presented in Section 4 for the general case, and Section 5 for the case with identical

reference entities, respectively. Section 6 turns to a numerical analysis. We provide a

short conclusion in Section 7.

2 The Model

In this section, we first briefly introduce Credit-Linked Notes. Then, a default model is

proposed by using a continuous-time Markov chain. We next derive the dynamics of a

kth-to-default CLN with both internal and external contagion risks.
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2.1 Credit-Linked Notes

We consider a kth-to-default CLN with N entities in the reference pool and a finite

maturity T < ∞, where N ≥ k ≥ 1. The note consists of three parts: N reference

entities, a CLN issuer, and an investor. It allows the protection buyer to transfer specific

credit risk to the protection seller.

Reference Entity 1
Reference Entity 2

︙
Reference Entity #

CLN Issuer Investor

coupon payments during the life of 
CLN: ! per unit time

less than " reference entities default before 
the maturity #$: % amount payment

issue price payment at the inception time 

the "th default event happens at &! before 
the maturity #$ : %!×(! amount payment

External Shocks

Figure 1: The cash flow of a kth-to-default CLN.

Figure 1 illustrates the cash flow of a kth-to-default CLN. More specifically, the

investor pays an issue price of the CLN at an inception time, and then receives regular

coupon payments (κ > 0 per unit time) from the issuer during the life of the CLN.

The CLN will be terminated before the maturity if and only if the kth default in the

reference pool occurs prior to the maturity, at which time the investor gets only part of

the nominal principal of the CLN. For example, suppose that the ith (i = 1, 2, · · · , N)

reference entity defaults at time τi ≤ T , and there are already other k − 1 reference

entities defaulted before. Then, at time τi, the CLN must be terminated immediately

and the investor receives amount of Ri × Li payment, where Ri ∈ [0, 1] and Li > 0 are

recovery rate and the nominal principal for the ith reference entity, respectively. On

the other hand, if the early termination does not happen, the investor receives the full

nominal principal (L > 0) of the CLN at the maturity T . In sum, this note can be

viewed as an ordinary fixed-income security embedded with a kth-to-default CDS.
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To characterize the defaults in the reference pool. Roughly speaking, two kinds of

risks are considered in the literature. One is called the internal contagion risk. That is,

a default of one individual reference entity may change the default intensities of others

in the reference pool. The other is known as the external contagion risk typically arsing

from market-wide shocks in a specific period such as the financial crisis in 2007-2008. A

realization of the external shock can also alter the intensities of reference entities. In

this paper, we consider both internal and external contagion risks and their impacts

on the optimal portfolio strategies later in Section 3. To model a rare disaster event in

a parsimonious way, we only study a one-time external shock. Next, we introduce the

shock realization and default model.

2.2 The Shock Realization and Default Model

Following Bélanger, Shreve, and Wong (2004) and Bo and Capponi (2016), we use a

(N + 1)-dimensional indicator process H(t) = (H0(t), H1(t), · · · , HN(t)) to describe the

realization and default state. H0(t) = 1{τ0≤t} is the realization state of the one-time

external shock, where τ0 is the realization time of the shock:

τ0 = inf{t ≥ 0;H0(t) = 1} .

Here 1{A} is an indicator function of a set A, which equals 1 if A 6= ∅ and 0 otherwise.

Meanwhile, Hi(t) = 1{τi≤t} is the default state of the ith reference entity, where τi is the

default time defined as

τi = inf{t ≥ 0;Hi(t) = 1}, i ∈ I = {1, 2, · · · , N}. (1)

The indicator process is supported by a filtered probability space (Ω,G, {Gt}t≥0,Q),

where Gt = σ(H(s); s ≤ t), and Q denotes the risk-neutral probability measure. We also

denote by G = (Gt, t ≥ 0) the market information filtration. Let S = {0, 1}N+1 be the

state space of the indicator process H = (H(t); t ≥ 0). As in Bo and Capponi (2016),

we assume that both shock realization and defaults of reference entities cannot happen

simultaneously.

We assume that H(t) follows a continuous-time Markov chain on S with a transition

rate (1 − Hi(t))hi(H(t)) to its neighboring state Hi(t) := (H0(t), · · · , Hi−1(t), 1 −
Hi(t), Hi+1(t), · · · , HN(t)) for i ∈ I ∪ {0}. Here hi(z) is a positive measurable function

defined on z = (z0, z1, · · · , zN) ∈ S such that

ξi(t) := Hi(t)−
∫ t

0

(1−Hi(s))hi(H(s))ds, t ≥ 0 (2)

5



is a (Q,Gt)-martingale. For the external shock, we assume that its intensity is constant

all the time, i.e.,

h0(z) = a0 > 0 .

In contrast, to capture both internal and external contagion risks, we further assume

that hi(·) admits the following form (Leung and Yue, 2009):

hi(z) = ai
(
(α0,i − 1)z0 + 1

) ∏
j∈I\{i}

(
(αj,i − 1)zj + 1

)
, i ∈ I, (3)

where ai > 0 is the base default intensity of the ith reference entity, α0,i > 0 is the

external contagious factor from the external shock to the ith reference entity, and αj,i > 0

is the internal contagious factor from the jth reference entity to the ith for i, j ∈ I. The
interpretation of (3) is as follows. If defaults never happen in the reference pool and

the external shock does not come, the base default intensity of each individual reference

entity is a positive constant, i.e., hi(0) = ai for all i ∈ I. If some reference entity defaults,

this individual default risk will have a contagious impact on other reference entities by

altering their default intensities permanently. For example, if the jth reference entity

defaults, the default intensity of the ith reference entity will have a proportional jump size

αj,i for all i ∈ I \ {j}. Depending on whether or not αj,i is greater than 1, the intensity

hi(z) can jump upward or downward accordingly. Similarly, if the external shock is

realized, the intensity of every reference entity in the pool will jump by a proportion

equaling α0,i for all i ∈ I.
Since the early termination event happens if and only if there are k default times

before the CLN’s maturity, it is useful to introduce the following default index:

Definition 1 (Default Index). Let M : z ∈ S 7→ M(z) ⊂ I be the index set of the

reference entities that have defaulted. The norm of M , denoted by |M |, is defined as the

number of the reference entities that have defaulted. Consequently, I\M(z) is the index

set of the reference entities that have not defaulted.

Remark 2.1. The default index only records the default state in the reference pool, so

it is not affected by the realization of the external shock. For example, suppose that

there are N = 5 reference entities (i.e., I = {1, 2, 3, 4, 5}), and that the second and fifth

ones have defaulted at time t. If the external shock is not realized (i.e., z0 = 0), then

H(t) = z = (0, 0, 1, 0, 0, 1). Otherwise, if the external shock is realized (i.e., z0 = 1),

then H(t) = z = (1, 0, 1, 0, 0, 1). For both cases, Definition 1 implies that M(z) = {2, 5},
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|M(z)| = 2, and I\M(z) = {1, 3, 4}. Another example is the initial state where no

realization and defaults happen, which means H(t) = 0 = (0, 0, 0, 0, 0, 0). In this case,

M(0) = ∅, |M(0)| = 0, and I\M(0) = I = {1, 2, 3, 4, 5}.

We also introduce the set Zk:

Zk = {z ∈ S : |M(z)| < k}, (4)

which collects the state where the cumulative default times in the reference pool is less

than k. Now, we can formally defined the critical default time denoted by τ , the kth

default time in the reference pool, as the first exit time of the set Zk for the indicator

process H with M(H(t−)) ∈ Zk at a given time t < T :

τ = inf{s ≥ t : M(H(s)) /∈ Zk, M(H(t−)) ∈ Zk} (5)

with the convention that inf{∅} = ∞. As a result, the kth-to-default CLN will be

terminated at the time min(τ, T ).

2.3 The Market

We consider a financial market consisting of a risk-free bond with a constant interest rate

r > 0 and a kth-to-default CLN introduced in Section 2.1. Without loss of generality, we

normalize the nominal principals to be one dollar as in the literature, i.e., Li = L = 1.

Next, to examine the dynamics of the CLN, consider first the pre-termination value of

the CLN at time t denoted by C(t,H(t)). That is, the current time t is strictly less than

the critical time τ defined in (5), or equivalently H(t) = z ∈ Zk. Then, the no-arbitrage

argument implies that

C(t,H(t)) = Cκ(t,H(t)) +
∑

i∈I\M(H(t))

Ci(t,H(t)) + CL(t,H(t)) , (6)

where functions Ci(t, z), Cκ(t, z), and CL(t, z) are given respectively by

Cκ(t, z) = E
[ ∫ min(τ,T )

t

e−r(u−t)κ du
∣∣∣Gt] , (7)

Ci(t, z) = E
[
e−r(τi−t)1{τ=τi≤T}Ri

∣∣∣Gt] , (8)

CL(t, z) = E
[
e−r(T−t)1{T<τ}

∣∣∣Gt] . (9)

Here τi defined in (1) and τ defined in (5) are the default time of the ith reference entity

and the kth default time in the reference pool, respectively. Their economic meanings
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are as follows. Cκ(t, z) is the present value of receiving κ per unit time premium during

the life of CLN. Ci(t, z) stands for the present value of the payment Ri when the critical

kth default happens on the ith reference entity before the maturity T . Finally, CL(t, z)

gives the present value of getting one dollar nominal principal at the maturity of CLN

when there is no early termination.

By the Feynman-Kac formula, Cκ( · ), Ci( · ), and CL( · ) respectively satisfy the

following differential equations: For (t, z) ∈ [0, T )×Zk,( ∂
∂t

+A
)
Cκ(t, z) + κ = r Cκ(t, z), (10)( ∂

∂t
+A

)
Ci(t, z) = r Ci(t, z), (11)( ∂

∂t
+A

)
CL(t, z) = r CL(t, z), (12)

where the operator A is the infinitesimal generator of the indicator process H:

A g(z) =
∑

j∈I∪{0}

(
g(zj)− g(z)

)
(1− zj)hj(z) =

∑
j∈I∪{z0}\M(z)

(
g(zj)− g(z)

)
hj(z)

for any measurable function g(z) defined on z ∈ S. Here the set I \M(z) stands for the

non-default indices of the reference entities. If the external shock is not realized (i.e.,

z0 = 0), then I ∪{z0} \M(z) = I ∪{0} \M(z), which includes the indices of non-default

entities and unrealized shock. In contrast, if the external shock is realized (i.e., z0 = 1),

then I ∪ {z0} \M(z) = I \M(z), which contains only the non-default indices of the

reference entities.

The following proposition shows that the pre-termination value function C(t, z) is

continuously differentiable in t ∈ [0, T ] for all z ∈ Zk.

Proposition 1. For all z ∈ Zk, the functions Cκ(t, z), Ci(t, z), and CL(t, z) are

continuously differentiable in t ∈ [0, T ]. Consequently, C(t, z) given by (6) is also

continuously differentiable in t ∈ [0, T ] for all z ∈ Zk. Moreover, C(t, z) admits an

explicit form given in Appendix B.

Proof. First, from (7) and (9), it is easy to check the following boundary and terminal

conditions hold:

Cκ(T , z) = 0 for z ∈ Zk, Cκ(t, z) = 0 for t ∈ [0, T ), z ∈ ∂Zk ,

CL(T , z) = 1 for z ∈ Zk, CL(t, z) = 0 for t ∈ [0, T ), z ∈ ∂Zk .

Consequently, the classical theory of the linear ordinary differential equations (ODEs)

implies that the differential equations (10) and (12) combined with the above conditions

have unique classical solutions for all z ∈ Zk.
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Next, we study the function Ci(t, z) for i ∈ I. On one hand, the definition (8) implies

that the following terminal condition hold:

Ci(T , z) = 0 . (13)

On the other hand, as there are k default protections, we first consider the case of

|M(z)| = k − 1. That is, there is only one default protection. In this case, we also have

two subcases: (i) zi = 1, and (ii) zi = 0.

(i) when zi = 1, which means the ith reference entity has defaulted already. From

the definition (8), we must have

Ci(t, z) = 0 for t ∈ [0, T ) .

(ii) when zi = 0, which means the ith reference entity is still alive. Then, the

definition (8) implies that

Ci(t, zi) = Ri, and Ci(t, zj) = 0 for all j ∈ I ∪ {z0} \M(z) \ {i}, t ∈ [0, T ) .

Plugging the above conditions into equation (11) yields

dCi(t, z)

dt
−
(
r +

∑
j∈I∪{z0}\M(z)\{i}

hj(z)
)
Ci(t, z) = −Rihi(z) .

Hence, this ODE together with the terminal condition (13) also has a unique classical

solution.

Finally, for the case of |M(z)| < k−1, we can use the terminal condition (13) plus the

boundary condition given in the case of |M(z)| = k − 1 to derive the required solutions.

This completes the proof.

Once the pre-termination value C(t,H(t)) is known, the value of the kth-to-default

CLN, denoted by C̃(t,H(t)), is clearly given by

C̃(t,H(t)) = 1{t<τ}C(t,H(t)) = 1{|M(H(t))|≤k−1}C(t,H(t)) .

The following proposition characterizes the dynamics of C̃(t,H(t)) under the risk-neutral

measure Q, whose proof is relegated in Appendix C.

Proposition 2. The Q-dynamics of the kth-to-default CLN value is given by

dC̃(t,H(t))

C̃(t,H(t−))
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=

{(
r − κ

C(t,H(t−))

)
dt+

∑
j∈I\M(H(t−))

(C(t,Hj(t−))

C(t,H(t−))
− 1
)
dξj(t)

}
1{|M(H(t−))|<k−1}

+

{(
r −

κ+
∑

j∈I\M(H(t−))Rjhj(H(t−))

C(t,H(t−))

)
dt−

∑
j∈I\M(H(t−))

dξj(t))

}
1{|M(H(t−))|=k−1}

+

{
(1−H0(t−))

(C(t,H0(t−))

C(t,H(t−))
− 1
)
dξ0(t)

}
1{|M(H(t−))|≤k−1} , (14)

with C̃(0,H(0−)) = C(0,H(0−)).

From the above dynamics, it is important that a default event has different impacts

on both drift and jump terms when |M(H(t−))| < k − 1 or |M(H(t−))| = k − 1. For

the drift term, since a default will not trigger an early termination when |M(H(t−))| <
k − 1, there are no expected cash payments except for an ordinary coupon payment

(κ per unit). As a result, the default has no direct impact on the drift term. In

contrast, expected payments will be received due to the early termination triggered

by a default event when |M(H(t−))| = k − 1. This explains why there is an extra

term
∑

j∈I\M(H(t−))Rjhj(H(t−))/C(t,H(t−)) in the drift. For the jump term, when

|M(H(t−))| = k − 1, the proportional jump size is −1 so that C̃(t,H(t)) = 0. This is

because the CLN is terminated at the kth default time. In contrast, when |M(H(t−))| <
k − 1, the CLN is still alive even if there were a default. As a result, the proportional

jump size C(t,Hj(t−))/C(t,H(t−))− 1 is strictly large than −1 for j ∈ I \M(H(t−)).

Finally, the last term in (14) arises from the presence of the external shock. Different

from the default risk, the external shock has no impact on the drift because it does

not generate any cash flow. However, there will be a proportional jump equaling

C(t,H0(t−))/C(t,H(t−))−1 when the external shock is realized, which triggers intensity

jumps in the reference pool.

Next, we derive the dynamics of CLN in the objective measure P as the investor wishes

to optimize his utility from terminal wealth under the real-world measure. However, the

value observed in the market is given under the risk-neutral measure Q. To this purpose,

let λ0(z) = λ0 ∈ (−1,∞) be a constant, and let λi(z) ∈ (−1,+∞) be an arbitrary

bounded measurable function defined on z ∈ S for i ∈ I. Assume that the process

X = (X(t); t ≥ 0) satisfies the following SDE given by

dX(t)

X(t−)
=

N∑
i=0

λi(H(t−))dξi(t), X(0−) = 1 ,

where ξi = (ξi(t); t ≥ 0) is defined by (2). Then we have the following result for the

change of measure, whose proof can be found in Bo and Capponi (2016).
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Lemma 2.1. For T > 0, define a new probability measure P� Q on GT by

dP = X(T )dQ ,

then, for all i ∈ I ∪ {0},

ξPi (t) = Hi(t)−
∫ t

0

(1−Hi(s))h
P
i (H(s))ds, t ≥ 0

is a (P,Gt)-martingale. hPi (H) is the P-default intensity of the reference entity i, and

satisifies

hPi (z) =
(
1 + λi(z)

)
hi(z), z ∈ S . (15)

With the help of Lemma 2.1, we can derive the P-dynamics of the CLN as follows.

Proposition 3. The P-dynamics of the kth-to-default CLN is given by

dC̃(t,H(t))

C̃(t,H(t−))

=

{[
r − κ

C(t,H(t−))
+

∑
j∈I\M(H(t−))

(C(t,Hj(t−))

C(t,H(t−))
− 1
)
λj(H(t−))hj(H(t−))

]
dt

+
∑

j∈I\M(H(t−))

(C(t,Hj(t−))

C(t,H(t−))
− 1
)
dξPj (t)

}
1{|M(H(t−))|<k−1}

+

{[
r −

κ+
∑

j∈I\M(H(t−))Rjhj(H(t−))

C(t,H(t−))
−

∑
j∈I\M(H(t−))

λj(H(t−))hj(H(t−))
]
dt

−
∑

j∈I\M(H(t−))

dξPj (t)

}
1{|M(H(t−))|=k−1}

+

{
(1−H0(t−))

(C(t,H0(t−))

C(t,H(t−))
− 1
)(
λ0 a0dt+ dξP0 (t)

)}
1{|M(H(t−))|≤k−1} . (16)

with C̃(0,H(0−)) = C(0,H(0−)).

In the literature, λi(z) is related to the default risk premium of the ith reference

entity. This terminology is an analog to the market price of risk. Intuitively, the

investor needs suitable risk compensations to bear the default risks in the objective

measure. Hence, the extra terms
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))
C(t,H(t−))

− 1
)
λj(H(t−))hj(H(t−))

and −
∑

j∈I\M(H(t−)) λj(H(t−))hj(H(t−)) account for the compensations for the default

risks when |M(H(t−))| < k − 1 and |M(H(t−))| = k − 1, respectively. Finally, the last

term
(
C(t,H0(t−))
C(t,H(t−))

− 1
)
λ0 a0 is the compensation for the external shock.
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3 Portfolio Selection Problem

Following Merton (1969), we consider an investor’s portfolio selection problem between a

riskless bond and a kth-to-default CLN introduced in Section 2 to maximize his expected

utility of the wealth at a scheduled terminal time T . Without loss of generality, we

assume that the investment horizon T is less than the maturity T of the CLN. Next, we

introduce the required investment strategies and the associated wealth processes.

3.1 Investment Strategies and Wealth Processes

Let φ(t) be the number of shares of the kth-to-default CLN that the investor buys

(φ(t) > 0) or sells (φ(t) < 0) at time t. Denote by B(t) and φB(t) the price of the

riskless bond and the number of shares invested in the bond, respectively. The process

φ = (φ(t), φB(t); 0 ≤ t ≤ T ) is called a portfolio process or a portfolio investment

strategy. As usual, we first require the portfolio process φ to be G-adapted.

Now, given a G-adapted portfolio process φ = (φ(t), φB(t); 0 ≤ t ≤ T ), its associated

wealth process, denoted by Wφ(t), is defined by

Wφ(t) = φ(t) C̃(t,H(t)) + φB(t)B(t), 0 ≤ t ≤ T.

The portfolio process φ is said to be self-financing if Wφ(t) = Wφ(0−) +Gφ(t), where

Gφ(t) is the cumulative gain process defined by

Gφ(t) =

∫ t

0

φ(s−)[dC̃(s,H(s)) + dD(s)] +

∫ t

0

φB(s)dB(s), 0 ≤ t ≤ T .

Here D = (D(t); 0 ≤ t ≤ T ) is the cumulative dividend process corresponding to the

kth-to-default CLN and satisfies D(0−) = 0, and

D(t) =

∫ t

0

κ1{s<min(τ,T )}ds+
∑
i∈I

Ri1{τi=τ≤t} + 1{t=T<τ} , (17)

where τ defined in (5) is the kth default times in the reference pool. (17) essentially

describes the cash flow of the CLN from the issuer to the investor which consists of three

parts: (i) a continuous coupon payment κ per unit time during the life of the CLN, (ii)

a one-time payment if early termination occurs, and (iii) a one-time payment at the

maturity if no early termination.

In this paper, we focus on a class of feedback investment strategies, which are formally

defined below:

12



Definition 2 (Admissible Feedback Investment Strategy). Given (t, w, z) ∈ [0, T ]×R+×
S, a portfolio process φ = (φ(u), φB(u); t ≤ u ≤ T ) is said to be a (t, w, z)-admissible

feedback investment strategy provided that (i) φ is G-predictable and locally bounded, (ii)

the associated wealth process Wφ starting from W (t−) = w is nonnegative, and (iii)

φ(u) has the following feedback form:

φ(u) = φ̃(u,W φ(u−),H(u−)), u ∈ [t, T ] ,

where φ̃( · ) is a function defined on [0, T ]× R+ × S.

It turns out that it is convenient to rewrite the investment strategy as the proportion

of wealth invested in the CLN defined below:

π(t) =
φ(t)C̃(t,H(t))

Wφ(t)
. (18)

Therefore, 1−π(t) is the proportion of wealth invested in the riskless bond. In the sequel,

we will also call π = (π(u); t ≤ u ≤ T ) defined in (18) a (t, w, z)-admissible feedback

investment strategy whenever φ = (φ(u), φB(u); t ≤ u ≤ T ) is admissible. In addition,

we shall write the wealth process Wφ(t) as W π(t) or simply W (t) interchangeably.

Proposition 4. Given (w, z) ∈ R+×S, let φ = (φ(t), φB(t); 0 ≤ t ≤ T ) or equivalently

π = (π(t); 0 ≤ t ≤ T ) defined in (18) be a (0, w, z)-admissible feedback investment

strategy from the initial time. Then, the P-dynamics of the wealth process is given by

dW (t)

W (t−)
=
(
r − π(t−)

∑
j∈I∪{z0}\M(H(t−))

∆M
(
t,H(t−),Hj(t−)

)
hj(H(t−))

)
dt

+ π(t−)
∑

j∈I∪{z0}\M(H(t−)

∆M
(
t,H(t−),Hj(t−)

)
dHj(t) , (19)

where

∆M(t, z, zj) = 1{|M(z)|≤k−1}

(
C(t, zj)

C(t, z)
− 1

)
. (20)

Remark 3.1. According to (19), a default event triggers a jump in the wealth process

such that

W (t) =
(

1 + π(t−)
∑

j∈I\M(H(t−))

∆M
(
t,H(t−),Hj(t−)

)
dHj(t)

)
W (t−) .

When |M(H(t−))| ≤ k − 1, if the jth reference entity defaults, the wealth will have a

jump given byW (t) =
(
1+π(t−)1{|M(H(t−)|≤k−1}

[
C(t,Hj(t−))/C(t,H(t−))−1

])
W (t−).

13



However, when |M(H(t−))| ≥ k, ∆M
(
t,H(t−),Hj(t−)

)
= 0 for all j. Consequently,

the wealth grows at the risk-free rate r, i.e., dW (t) = rW (t)dt. In contrast, a realization

of the external shock always leads to a jump in the wealth process such that

W (t) =
(

1 + π(t−)(1−H0(t−))∆M
(
t,H(t−),H0(t−)

)
dH0(t)

)
W (t−) .

From Definition 2, the wealth process W (t) is required positive under an admissible

investment strategy π(t). According to Jacod and Shiryaev (2003) and the dynamics of

W (t) given in (19), the investment strategy has to satisfy the following condition:

1 + π(t−) ∆M(t, z, zj) > 0, j ∈ I ∪ {z0} \M(z) . (21)

The following proposition characterizes the investment constraint in terms of π(t)

defined in (18). Thanks to the linear structure of the dynamics (19), the condition (21)

implies that the investment constraint, denoted by Π, depends on (t, z) but not on the

wealth level w.

Proposition 5 (Investment Constraint). For all (t, w, z) ∈ [0, T )×R+×S, an admissible

investment strategies π(t) must satisfy:

π(t) ∈ Π(t, z) =
(
π(t, z), π(t, z)

)
,

where the lower and upper bounds π(t, z) and π(t, z) are given as follows. If z ∈ S \ Zk,
then π(t, z) = −∞, and π(t, z) = +∞. Otherwise, we have:

(i) If C(t, zj) > C(t, z) for all j ∈ I ∪ {z0} \M(z),

π(t, z) = max
j∈I∪{z0}\M(z)

{
− C(t, z)

C(t, zj)− C(t, z)

}
, π(t, z) = +∞ ,

where function C( · ) is the pre-termination value of the CLN.

(ii) If C(t, zj) < C(t, z) for all j ∈ I ∪ {z0} \M(z),

π(t, z) = −∞, π(t, z) = min
j∈I∪{z0}\M(z)

{
− C(t, z)

C(t, zj)− C(t, z)

}
.

(iii) If C(t, zi) > C(t, z) for i ∈ M̃ , and C(t, zj) < C(t, z) for j ∈ M̃ ′,

π(t, z) = max
i∈M̃

{
− C(t, z)

C(t, zi)− C(t, z)

}
, π(t, z) = min

j∈M̃ ′

{
− C(t, z)

C(t, zj)− C(t, z)

}
,

where M̃ 6= ∅, M̃ ′ 6= ∅, M̃ ∩ M̃ ′ = ∅, and M̃ ∪ M̃ ′ = I ∪ {z0} \M(z).

Next, we introduce the investor’s utility maximization problem.
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3.2 Utility Maximization

Given a state (t, w, z) ∈ [0, T )× R+ × S and a (t, w, z)-admissible feedback investment

strategy π ∈ Π(t, z), we assume that the investor’s objective is the following expected

utility of his terminal wealth:

JT (t, w, z; π) = EP[U(W π(T )) | W π(t−) = w, H(t−) = z] ,

where EP is the expectation with respect to the physical measure P, the utility function

U( · ) is given by

U(w) =
wγ

γ
,

with γ ∈ (0, 1) the risk-aversion parameter. Here W π satisfies the dynamics (19) with

W π(t−) = w, and H follows a continuous-time Markov chain on S with a transition

rate 1{Hi(t)=0}h
P
i (H(t)) and an initial value H(t−) = z, where hPi ( · ) is defined in (15)

for i ∈ I ∪ {0}.
For any (t, w, z) ∈ [0, T ]× R+ × S, the investor’s goal is to maximize the objective

functional JT (t, w, z; π) across the class of the (t, w, z)-admissible feedback investment

strategy π subject to the constraint Π(t, z) given in Proposition 5. Hence, the investor’s

portfolio selection problem can be written as the following stochastic control problem:

v(t, w, z) = sup
π∈Π(t,z)

JT (t, w, z; π) , (22)

subject to the dynamics (19), and the default intensity (15).

In the next section, we turn to a theoretical analysis to the utility maximization

problem (22).

4 Theoretical Analysis

To solve the optimization problem (22), we shall analyze an associated Hamilton-Jacobi-

Bellman (HJB) equation, which can be formally derived by applying the dynamic

programming principle. The optimal investment strategies are then studied by assuming

a smooth solution to the HJB equation exists. Finally, after proving the existence and

uniqueness of a classic solution to the HJB equation, we establish a verification theorem

for the original optimization problem (22).
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4.1 HJB Equation

By the dynamic programming principle (e.g., Pham (2009)), the value function v(t, w, z)

defined in (22) is expected to solve an HJB equation coupled with suitable terminal

and/or boundary conditions.

First, consider the region where the CLN is still alive, i.e., (t, w, z) ∈ [0, T )×R+×Zk,
where the set Zk is defined in (4). In this region, the value function satisfies the following

equation:

sup
π∈Π(t,z)

(
∂

∂t
+ L

)
v (t, w, z) = 0 for (t, w, z) ∈ [0, T )× R+ ×Zk . (23)

Here Π(t, z) is the constraint of all (t, w, z)-admissible investment strategies specified in

Proposition 5. The operator L = Lw + LJ , where

Lwv(t, w, z) =
(
r − π

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z)
)
w

∂

∂w
v(t, w, z) , (24)

LJv(t, w, z) =
∑

j∈I∪{z0}\M(z)

(
v
(
t, w + wπ∆M(t, z, zj), zj

)
− v(t, w, z)

)
× (1 + λj(z))hj(z) . (25)

Here ∆M(t, z, zj) is defined in (20), and hj(z) is given by (3).

Second, consider the region where the CLN has been already terminated, i.e.,

(t, w, z) ∈ [0, T ) × R+ × S \ Zk. Since ∆M(t, z, zj) = 0 when |M(z)| ≥ k, we have

dW (t) = rW (t) dt as pointed out in Remark 3.1. Consequently, the following condition

must hold:

v(t, w, z) = eγr(T−t)U(w) for (t, w, z) ∈ [0, T )× R+ × S \ Zk , (26)

which is the Merton’s solution with only risk-free asset.

Finally, at the terminal time of the investment T , we immediately obtain the following

condition:

v (T,w, z) = U(w) for (w, z) ∈ R+ × S . (27)

With the help of the HJB equation, we now consider the investment strategy.

4.2 Optimal Investment Strategy

We assume that the HJB equation (23) has a sufficiently smooth solution v(t, w, z) with

the following separation property in w:

v(t, w, z) = wγV (t, z) , (28)
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where V (t, z) is a sufficiently smooth function for (t, z) ∈ [0, T ]×S. As in Merton (1969),

this separation not only reduces our problem from three dimensions of (t, w, z) to two

dimensions of (t, z), but also implies that the value function is concave in w, which is

critical for analyzing the optimal strategy in terms of the proportion of wealth invested

in the CLN denoted by π∗(t) = π∗(t, w, z). We will continue our subsequent analysis

with this conjecture, and later will verify it.

First of all, since the investor will not hold the CLN when it has been already

terminated, the optimal strategy must be zero, i.e., π∗(t) = 0 for (t, w, z) ∈ [0, T ) ×
R+ × S \ Zk. Hence, it is sufficient to study the region where the CLN is still alive, i.e.,

(t, w, z) ∈ [0, T )× R+ ×Zk.
Note that v(t, w, z) given in (28) is concave in w, so π∗(t) must satisfy the following

first order condition: For (t, w, z) ∈ [0, T )× R+ ×Zk,

0 =
∑

j∈I∪{z0}\M(z)

∂

∂w
v
(
t, w[1 + π∗∆M(t, z, zj)], zj

)
∆M(t, z, zj)(1 + λj(z))hj(z)

− ∂

∂w
v(t, w, z)

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z) , (29)

where ∆M(t, z, zj) is defined in (20), and hj(z) is defined in (15). To interpret the first

order condition (29), we rewrite it as∑
j∈I∪{z0}\M(z)

ωj(1 + λj(z))
∂

∂w
v
(
t, w[1 + π∗∆M(t, z, zj)], zj

)
=

∂

∂w
v(t, w, z) , (30)

where the “weight” ωj is given by

ωj =
∆M(t, z, zj)hj(z)∑

j∈I∪{z0}\M(z) ∆M(t, z, zj)hj(z)
.

Which event (default or shock realization) will occur is a priori unknown, so (30) implies

that the investor chooses the optimal π∗ to make the current marginal value of wealth

(i.e., ∂
∂w
v(t, w, z)) equal the weighted average of the risk-adjusted marginal value of

wealth conditional on a default or a shock realization. Here the weight ωj is determined

jointly by the jump size ∆M(t, z, zj) and the jump intensity hj(z). The marginal value

conditional on a default or a shock realization is adjusted by the corresponding risk

compensation characterized by (1 + λj(z)). In other words, the first order condition (30)

suggests that the investor needs to balance all risk factors in the reference pool and from

the external shock simultaneously. Unlike the case where each asset associates with a

single specific risk factor, the CLN contains all these risk factors. As a consequence,
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these risk factors are non-separable, which makes the optimal investment strategies more

involved.

Using the homogeneity property, we can simplify the first order condition (29) as the

following one, which is independent of the wealth level w :

0 =
∑

j∈I∪{z0}\M(z)

V (t, zj)
(
1 + π∗(t) ∆M(t, z, zj)

)γ−1
∆M(t, z, zj)(1 + λj(z))hj(z)

− V (t, z)
∑

j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z) . (31)

Since the first order condition (31) is highly nonlinear, π∗(t, z) generally cannot

be derived in a closed form. To examine the existence and uniqueness of the optimal

strategy π∗(t), define a strictly positive vector

V =
(
V, V j1 , · · · , V j|I∪{z0}\M(z)|

)
, ji ∈ I ∪ {z0} \M(z) , (32)

and a function

g(t, z,V, π) =
∑

j∈I∪{z0}\M(z)

V j
(
1 + π∆M(t, z, zj)

)γ−1
∆M(t, z, zj)(1− λj(z))hj(z)

− V
∑

j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z) , (33)

for (t, z) ∈ [0, T ) × Zk, V is given in (32), and π ∈ Π(t, z), where Π(t, z) is given in

Proposition 5.

Proposition 6. For all (t, z) ∈ [0, T )×Zk, let the vector V, the function g(t, z,V, π)

and the set Π(t, z) be given by (32), (33), and Proposition 5, respectively. Then, there

exists a unique π∗ ∈ Π(t, z) such that

g(t, z,V, π∗) = 0 . (34)

In addition, π∗ is continuously differentiable in (t, z,V).

Proof. Note first that g(t, z,V, π) is continuous and decreasing with respect to π, and

V > 0. According to the signs of ∆M , we next divide the proof into several cases:

Case 1. C(t,zj)
C(t,z)

− 1 > 0, j ∈ I ∪ {z0} \M(z). It is easy to check that
lim
π↓π

g(t, z,V, π) = +∞ ,

lim
π↑π

g(t, z,V, π) = V (t, z)

[ ∑
j∈I∪{z0}\M(z)

(
1− C(t, zj)

C(t, z)

)
hj(z)

]
< 0 ,
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where π and π are given in Proposition 5. Since g(t, z,V, π) is continuous in π ∈ (π, π),

the Intermediate Value Theorem implies that there is a unique solution π∗ ∈ (π, π) to

the equation (34).

Case 2. C(t,zj)
C(t,z)

− 1 < 0, j ∈ I ∪ {z0} \M(z). It is easy to check that
lim
π↓π

g(t, z,V, π) = V (t, z)

[ ∑
j∈I∪{z0}\M(z)

(
1− C(t, zj)

C(t, z)

)
hj(z)

]
> 0 ,

lim
π↑π

g(t, z,V, π) = −∞ .

Hence, there exists a unique solution π∗ ∈ (π, π) to the equation (34) in the desired

domain of π.

Case 3. C(t,zi)
C(t,z)

− 1 > 0, i ∈ M , C(t,zj)
C(t,z)

− 1 < 0, j ∈ M ′, M 6= ∅, M ′ 6= ∅,
M ∪M ′ = I ∪ {z0} \M(z) and M ∩M ′ = ∅. Then, we have

lim
π↓π

g(t, z,V, π) = +∞, lim
π↑π

g(t, z,V, π) = −∞ ,

Consequently, there exists a unique solution π∗ ∈ (π, π) to the equation g(t, z,V, π) = 0.

Case 4. C(t,zi)
C(t,z)

− 1 = 0, C(t,zj)
C(t,z)

− 1 6= 0, i ∈ K, j ∈ I ∪ {z0} \M(z) \ K, where

K ⊂ I ∪ {z0} \M(z). Using a similar argument, we can also get the unique solution of

equation (34).

Finally, the claim that π∗(t, z) is continuously differentiable in (t, z,V) follows

immediately from the Implicit Function Theorem.

Note that if V (t, z) > 0 for all (t, z) ∈ [0, T ) × Zk, we can set V = V (t, z), and

V ji = V (t, zji) for ji ∈ I∪{z0}\M(z). Applying Propositiowen 6, the optimal investment

strategy π∗(t) can be derived uniquely from the first order condition (31).

4.3 ODE System for the Reduced Value Function V

As mentioned before, using the separation property in (28), we can reduce the three-

dimensional problem for the original value function v(t, w, z) to the two-dimensional

problem for the reduced value function V (t, z).

First, in the region where the CLN is alive, i.e., (t, z) ∈ [0, T ) × Zk, V (t, z) solves

the following ODEs:

0 = max
π∈Π(t,z)

dV (t, z)

dt
+ γV (t, z)

{
r − π

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z)
}

+
∑

j∈I∪{z0}\M(z)

{(
1 + π∆M(t, z, zj)

)γ
V (t, zj)− V (t, z)

}
(1 + λj(z))hj(z) . (35)
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Second, in the region where the CLN has been already terminated, i.e., (t, z) ∈
[0, T )× S \ Zk, the condition (26) implies that

V (t, z) =
1

γ
eγr(T−t) . (36)

Finally, the terminal condition (27) is equivalent to that

V (T, z) =
1

γ
for z ∈ S . (37)

The following proposition states that the above ODE system is well-posed.

Proposition 7 (Existence and Uniqueness). The nonlinear ODE system of (35), (36),

and (37) has a unique positive solution V (t, z), which is continuously differentiable in

t ∈ [0, T ] for all z ∈ Zk.

Proof. We prove the proposition by first constructing a sequence of functions {ϕn}∞n=0,

and then showing that the constructed sequence converges to the solution of the nonlinear

ODE system. We divide the construction into several steps below.

Step 1. Fix z ∈ S, and define ϕ0(t, z) = 1
γ
eγr(T−t) for t ∈ [0, T ]. Let

V =
(
ϕ0, ϕ0(t, zj1), · · · , ϕ0(t, zj|I∪{z0}\M(z)|)

)
.

Applying Proposition 6, there is a unique π0 ∈ Π(t, z) such that g(t, z,V, π0) = 0,

where g( · ) is defined in (33). In addition, the continuity of ϕ0 implies that π0 is also

continuously differentiable in t ∈ [0, T ], and is uniformly bounded.

Step 2. Consider the following linear ODE system of (26), (27), and

0 =
dϕ(t, z)

dt
+ γϕ(t, z)

{
r − π0

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z)
}

+
∑

j∈I∪{z0}\M(z)

{(
1 + π0 ∆M(t, z, zj)

)γ
ϕ(t, zj)− ϕ(t, z)

}
(1 + λj(z))hj(z) , (38)

in [0, T ]. A standard ODE theory shows that the above linear ODE system admits a

classical solution, which is denoted by ϕ1(t, z) for t ∈ [0, T ]. Moreover, we have

ϕ1(t, z) > 0, ||ϕ1|| = max
t∈[0,T ]

{
|ϕ1(t, z)|+

∣∣∣dϕ1(t, z)

dt

∣∣∣+
∣∣∣d2ϕ1(t, z)

dt2

∣∣∣} < CT ,

where CT is a positive constant depending only on T . To see this, we rewrite the ODE

(38) in the following way:

0 =
dϕ(t, z)

dt
+ ϕ(t, z)

{
γr −

∑
j∈I∪{z0}\M(z)

[
γπ0∆M(t, z, zj) + (1 + λj(z))

]
hj(z)

}
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+
∑

j∈I∪{z0}\M(z)

(
1 + π0 ∆M(t, z, zj)

)γ
ϕ(t, zj)(1 + λj(z))hj(z) .

Then, we can follow the arguments in the proof of Proposition 1 by first considering the

case of |M(z)| = k−1 and using the condition (36) in the early termination region to show

that the last term in the above ODE, i.e.,
∑(

1 + π0 ∆M(t, z, zj)
)γ
ϕ(t, zj)(1+λj(z))hj(z),

is positive, continuous, and uniformly bounded. By the theory of linear ODE, ϕ1(t, z)

satisfies the above stated properties when |M(z)| = k−1. For the case of |M(z)| < k−1,

a similar argument leads to the required results.

Step 3. As in Step 1, update a new strategy π1 by again applying Proposition 6

with replacing ϕ0 by ϕ1. Next, solve the linear ODE system of (36), (37), and (38) with

replacing π0 by π1, and denote its solution by ϕ2.

Repeat the above procedure, we obtain a sequence of functions {ϕn(t, z)}∞n=0 satisfying

that ϕn is continuously differentiable in t ∈ [0, T ], and

ϕn(t, z) > 0, ||ϕn|| < CT ,

where CT is a positive constant depending only on T . Meanwhile, we also have a sequence

of investment strategies {πn(t)}∞n=0 which are continuous and uniformly bounded.

Next, we prove the convergence of the sequence to the solution of the nonlinear ODE

system. By Arzela-Ascoli lemma, there exists a continuously differentiable function

ϕ∗(t, z) = limn→∞ ϕn(t, z) and a continuous strategy π∗(t) = limn→∞ πn(t) solving the

linear ODE system of (36), (37), and (38) with π0 being replaced by π∗. Moreover, π∗ also

solves the equation g(t, z,V∗, π∗) = 0, where V∗ =
(
ϕ∗, ϕ∗(t, z

j1), · · · , ϕ∗(t, zj|I∪{z0}\M(z)|)
)
.

This in turn implies that ϕ∗ solves the nonlinear ODE system of (35), (36), and (37).

Finally, we turn to the uniqueness. For (t, z) ∈ [0, T ] × Zk, and a continuously

differentiable function ϕ(t, z), define

F (ϕ) = γϕ(t, z)
{
r − π(ϕ)

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z)
}

+
∑

j∈I∪{z0}\M(z)

{(
1 + π(ϕ) ∆M(t, z, zj)

)γ
ϕ(t, zj)− ϕ(t, z)

}
(1 + λj(z))hj(z) ,

where π(ϕ) is the unique solution derived in Proposition 6 with V =(
ϕ, ϕ(t, zj1), · · · , ϕ(t, zj|I∪{z0}\M(z)|)

)
. Then, Proposition 6 shows that π(ϕ) is con-

tinuously differentiable in ϕ. This in turn implies that F (ϕ) is also continuously

differentiable and thereby locally Lipschitz. So, the uniqueness follows immediately from

the uniqueness of the nonlinear ode d
dt
ϕ = F (ϕ).
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4.4 Verification Theorem

Having established the existence and uniqueness of a sufficiently smooth solution to the

HJB equation (23) together with the conditions given in (26) and (27), we now show

that this smooth function coincides with the value function v defined in (22).

Recall that L = Lw +LJ , where Lw and LJ are defined in (24) and (25), respectively.

Let ϕ(t, w, z) be a C1 in t and w. Also, let π(t) ∈ Π(t, z). Then for t < u,

ϕ(u,W π(u),H(u)) = ϕ(t,W π(t−),H(t−)) +

∫ u

t

(
∂

∂s
+ L

)
ϕ(s,W π(s),H(s))ds

+Mπ
ϕ(u)−Mπ

ϕ(t),

where W π is the wealth process under the control π, andMπ(t) is a P-(local) martingale

defined by

Mπ
ϕ(t) =

∑
j∈I∪{z0}\M(H(t−))

∫ t

0

[
ϕ
(
s, W̃ π

j (s−),Hj(s−)
)
− ϕ

(
s,W π(s−),H(s−)

)]
dξPj (s)

for t ≥ 0, and W̃ π
j (s−) = W π(s−)[1 + π(s−)∆M(s,H(s−),Hj(s−))].

Theorem 1 (Verification). Let V (t, z) be the unique positive solution to the ODE system

of (35), (36), and (37) in [0, T ] × S. For all (t, z) ∈ [0, T ] × S, define the optimal

strategies π∗(t) as follows:

π∗(t) =

 satisfies the first-order condition (31), if |M(z)| ≤ k − 1 ,

0, if |M(z)| ≥ k .
(39)

Then, for all (t, w, z) ∈ [0, T ]× R+ × S, the value function v(t, w, z) defined in (22) has

the following form

v(t, w, z) = wγV (t, z) .

In addition, the optimal investment strategy in terms of proportional wealth invested in

the CLN is given by π∗(t) defined in (39).

Proof. First, we prove that the solution of the HJB equation is no bigger than the value

function. Second, we prove that the solution of the HJB equation is consistent with the

value function when taking the limits. Divide the construction into several steps below.

Step 1. Let ϕ(t, w, z) = wγV (t, z) for (t, w, z) ∈ [0, T ]× R+ × S. For any admissible

feedback control π(t) ∈ Π(t, z), define the process

Y π(u) = ϕ
(
u,W π(u),H(u)

)
, u ≥ t ,
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where W π(u) is the wealth process under the control π with initial state W π(t−) = w.

According to Ito’s formula, Y π(u) satisfies

Y π(u) = Y π(t−) +

∫ u

t

F
(
π(s), s,W π(s),H(s)

)
ds+Mπ

ϕ(u)−Mπ
ϕ(t),

where the function F (π, t, w, z) is given by

F (π, t, w, z) =wγ
∂V (t, z)

∂t
+ γwγ

[
r − π

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)hj(z)
]
V (t, z)

+ wγ
∑

j∈I∪{z0}\M(z)

[(
1 + π∆M(t, z, zj)

)γ
V (t, zj)− V (t, z)

]
hPj (z).

Note that

∂2F

∂π2
= γ(γ − 1)wγ

∑
j∈I∪{z0}\M(z)

[
1 + π∆M(t, z, zj)

]γ−2[
∆M(t, z, zj)

]2

V (t, zj)hPj (z) ≤ 0 ,

which implies that

F (π, t, w, z) ≤ F (π∗, t, w, z) = 0,

where π∗ is given by (39), and the last equality follows from Proposition 6. Consequently,

EP
t [Y

π(u)] ≤ wγV (t, z) + EP
t [Mπ

ϕ(u)−Mπ
ϕ(t)] , (40)

with equality when π = π∗, where EP
t [·] = EP[·|Gt].

Taking u = T ∧τa,b in (C–74), we have EP
t [Mπ

ϕ(u)−Mπ
ϕ(t)] = 0, where τa,b = inf{u ≥

t;W π(u) ≥ b−1 or W π(u) ≤ a} and 0 < a < w < b−1. Hence

EP
t [Y

π(T ∧ τa,b)] ≤ wγV (t, z) ,

with the equality when π = π∗. Since Y π(T ∧ τa,b) is positive, using Fatou lemma and

the terminal condition (37) yields that

EP
t [U(W π(T ))] ≤ lim

a,b→0
EP
t

[(
W π(T ∧ τa,b)

)γ
V (T ∧ τa,b,H(T ∧ τa,b))

]
= lim

a,b→0
EP
t [Y

π(T ∧ τa,b)] ≤ wγV (t, z) for all π ∈ Π(t, z) .

Consequently, from the definition (28) we have

v(t, w, z) = sup
π∈Π(t,z)

EP
t [U(W π(T ))] ≤ wγV (t, z) .

Step 2. It remains to show that v(t, w, z) = wγV (t, z) under the optimal investment

strategy π∗. To this, it suffices to show that

lim
a,b→0

EP
t

[(
W π∗(T ∧ τa,b)

)γ
V (T ∧ τa,b,H(T ∧ τa,b))

]
= EP

t [U(W π∗(T ))] . (41)
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Note that from the continuous differentiability of the function V (t, z) in t ∈ [0, T ], there

exist C1 > 0 and C2 > 0 such that

lim
a,b→0

EP
t

[∣∣∣(W π(T ∧ τa,b)
)γ
V (T ∧ τa,b,H(T ∧ τa,b))

∣∣∣2] ≤ C1 + C2 EP
t

[∣∣∣W π(T ∧ τa,b)
∣∣∣2].

By the Corollary 7.1.5 in Chow and Teicher (2003), (D–76) holds if we can show that

sup
0<a<w<b−1<+∞

EP
t

[∣∣∣W π(T ∧ τa,b)
∣∣∣2] <∞ . (42)

To show (42), let’s first define the functions respectively

α(t, w, z) = w
(
r − π∗

∑
j∈I∪{z0}\M(z)

∆M(t, z, zj)λjhj(z)
)
,

βj(t, w, z) = w π∗∆M(t, z, zj), j ∈ I ∪ {z0} \M(z) .

Then, the P-dynamics of the wealth process can be written as

dW π∗(t) = α(t,W π∗(t),H(t))dt+
∑

j∈I∪{z0}\M(z)

βj(t,W
π∗(t),H(t))dξPj (t).

Because π < π∗ < π, we consider the following two cases:

Case (i). −∞ < π < π < +∞.

Let DN,T be a generic constant depending on N and T , which may be different for

each inequality. For 0 ≤ t < u ≤ T , the linear growth of α(t, w, z) in w implies that

EP
t

[
sup
t≤u≤T

∣∣∣ ∫ u

t

α(s,W π∗(s)),H(s))ds
∣∣∣2]

≤DN,T (T − t)EP
t

[ ∫ T

t

(
W π∗(s)− w + w

)2

ds
]

≤DN,T

(
(T − t)w2 + EP

t

[ ∫ T

t

∣∣∣W π∗(s)− w
∣∣∣2ds]),

where the last inequality follows from the Holder inequality. Similarly, the linear growth

of βj(t, w, z) in w leads to that

EP
t

[
sup
t≤u≤T

∣∣∣ ∑
j∈I∪{z0}\M(z)

∫ u

t

βj(s,W
π∗(s),H(s))dξPj (s)

∣∣∣2]
≤DN,T

∑
j∈I∪{z0}\M(z)

EP
t

[ ∫ T

t

∣∣∣βj(s,W π∗(s),H(s))
∣∣∣2dHj(s)

]
=DN,T

∑
j∈I∪{z0}\M(z)

EP
t

[ ∫ T

t

∣∣∣βj(s,W π∗(s),H(s))
∣∣∣2hPj (H(s))ds

]
≤DN,T

(
(T − t)w2 + EP

t

[ ∫ T

t

∣∣∣W π∗(s)− w
∣∣∣2ds]),
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where the last inequality is derived from the BDG inequality.

By the Gronwall inequality, the wealth process satisfies:

EP
t

[
sup
t≤u≤T

|W π∗(u)− w|2
]
≤ DN,T w

2 + D̄N,T , (43)

where D̄N,T is a positive constant depending on N and T .

Case (ii). π = −∞ or π = +∞.

Since V (t, z) is continuously differentiable in t ∈ [0, T ], Proposition 6 shows that

π∗ = π∗(t,V(t)) is also continuous in t ∈ [0, T ], where the vector V(t) is defined by

V(t) =
(
V (t, z), V (t, zi1), · · · , V (t, zi|I∪{z0}\M(z)|)

)
.

So π∗(t, z) is bounded. Then, we can also obtain the moment estimate (43) by using the

similar argument in Case (i).

Finally, from (43), we obtain

sup
0<a<w<b−1<+∞

EP
t

[
|W π∗(T ∧ τa,b)|2

]
≤ 2w2 + 2EP

t

[
sup
t≤u≤T

∣∣∣W π∗(u)− w
∣∣∣2] < +∞.

This completes the proof.

Before proceeding to a numerical analysis, we next focus on a special symmetric case

where all reference entities are identical. In this case, the optimal investment strategy

can be characterized more explicitly.

5 Identical Reference Entities

In this section, we focus on a special case where all reference entities have the same

characteristics. To be more precise, for the external shock, we set

h0(z) = a0, α0,i = α0 for all i ∈ I,

where a0 > 0 and α0 > 0 are constants. For the reference entities, we assume that

ai = â, αij = α̂ for all i, j ∈ I,

where â > 0 and α̂ > 0 are constants. In addition, the risk premium parameters of the

external shock λ0(z) = λ0 ∈ (−1,∞) and of the default λi(z) = λ̂ ∈ (−1,∞), and the

recovery rate Ri = R̂ ∈ [0, 1] are the same for all reference entities.

Under this symmetric assumption, we can simplify the problem significantly. In

particular, closed form solutions are available when there are no external contagion risks.

To start, we first simplify our notations in the next subsection.
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5.1 Notations

With the above symmetry, it is easy to check that the default intensity hi(z) can be

rewritten as, for i ∈ I \M(z),

hi(z) =

{
ĥ0,m = â (α̂)m if the external shock is not realized,
ĥ1,m = â (α̂)mα0 if the external shock is realized,

which depends only on the default times m = |M(z)| and the external shock realization.

Put differently, the investor need only record the number of defaults in the reference pool

but not the specific states of reference entities. Similarly, C(t, z), the pre-termination

value of the kth-to-default CLN, and V (t, z), the reduced value function, also depend

only on the default times m = |M(z)| and the external shock realization. Hence, we use

Ĉ0,m(t) and Ĉ1,m(t) to denote the values of CLN before and after the one-time external

shock realization when there have been already m defaults, respectively. Similarly, V0,m(t)

and V1,m(t) stands for the reduce value functions before and after the external shock

realization when there have been already m defaults, respectively.

5.2 Values of CLN

From the results in Section 2 and using the symmetric property, it is easy to see that

Ĉ0,m(t) and Ĉ1,m(t) solve respectively the following two ordinary differential equations:
0 = d

dt
Ĉ0,m(t) +

(
(N −m)ĥ0,m + r + a0

)
Ĉ0,m(t)

−(N −m)ĥ0,mĈ0,m+1(t)− a0Ĉ1,m(t)− κ, t ∈ [0, T ) ,

Ĉ0,m(T ) = 1, 0 ≤ m < k ≤ N,

Ĉ0,k(t) = R̂ ,

(44)


0 = d

dt
Ĉ1,m(t) +

(
(N −m)ĥ1,m + r

)
Ĉ1,m(t)

−(N −m)ĥ1,mĈ1,m+1(t)− κ, t ∈ [0, T ) ,

Ĉ1,m(T ) = 1, 0 ≤ m < k ≤ N,

Ĉ1,k(t) = R̂ .

(45)

The solutions of the above problems can be obtained by first solving the self-contained

equation (45), and then plugging Ĉ1,m(t) into the equation (44) to derive Ĉ0,m(t).

Intuitively, when there is no external contagion risk (i.e., α0 = 1), the default intensity

h1,m = h2,m, which in turn implies that there should be no difference between Ĉ0,m(t)

and Ĉ1,m(t). One can simply verify that Ĉ1,m(t) also solves the equation (44). So the

claim that Ĉ0,m(t) = Ĉ1,m(t) holds immediately by applying the uniqueness of the linear

ordinary differential equation (44). We will turn to this spacial case shortly and use this

result at the end of this section.
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5.3 Reduced Value Functions

Also from the results in Section 2 and using symmetric property, the reduced value

functions V̂0,m(t) and V̂1,m(t) solve the following two non-linear ordinary differential

equations, respectively:

0 = d
dt
V̂0,m(t) + max

π

(
r − π

[
(N −m)∆̂m(t)ĥ0,m + ∆̂0,1,m(t)a0

])
γV̂0,m(t)

+(N −m)(1 + λ̂)ĥ0,m

(
[1 + π ∆̂m(t)]γV̂0,m+1(t)− V̂0,m(t)

)
+(1 + λ0)a0

(
[1 + π ∆̂0,1,m(t)]γV̂1,m(t)− V̂0,m(t)

)
, t ∈ [0, T ) ,

V̂0,m(T ) = 1
γ
, 0 ≤ m < k ≤ N,

V̂0,k(t) = 1
γ
erγ(T−t) ,

(46)


0 = d

dt
V̂1,m(t) + max

π

(
r − π (N −m)∆̂1,m(t)ĥ1,m

)
γV̂1,m(t)

+(N −m)(1 + λ̂)ĥ1,m

(
[1 + π ∆̂1,m(t)]γV̂1,m+1(t)− V̂1,m(t)

)
, t ∈ [0, T ) ,

V̂1,m(T ) = 1
γ
, 0 ≤ m < k ≤ N,

V̂1,k(t) = 1
γ
erγ(T−t) ,

(47)

where ∆̂0,1,m(t), ∆̂0,m(t) and ∆̂1,m(t) are given respectively by

∆̂0,1,m(t) :=
Ĉ1,m(t)

Ĉ0,m(t)
− 1, ∆̂0,m(t) :=

Ĉ0,m+1(t)

Ĉ0,m(t)
− 1, ∆̂1,m(t) :=

Ĉ1,m+1(t)

Ĉ1,m(t)
− 1 .

Likewise, to derive the solutions of the above problems, we can first solve the equation

(47) and then the equation (46). Again, in the absence of external contagion risk

(i.e., α0 = 1), V̂0,m(t) and V̂1,m(t) must be the same. To see this, we use the result

Ĉ0,m(t) = Ĉ1,m(t) to derive that ∆̂0,1,m(t) = 0 and ∆̂0,m(t) = ∆̂1,m(t). Next, one can

verify that V̂0,m = V̂1,m is a solution of the equation (46). Finally, the uniqueness of the

equation (46) guarantees the claim. In the next subsection, we will further show that

the optimal investment strategies can be derived explicitly in the absence of external

contagion risks.

5.4 Absence of External Contagion Risks

Since it does not matter whether or not the external shock is realized in the absence of

external contagion risks (i.e., α0 = 1), we use the following notations to make a further

simplification. Let

Ĉm(t) := Ĉ0,m(t) = Ĉ1,m(t) , (48)

V̂m(t) := V̂0,m(t) = V̂1,m(t) . (49)
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Then, Ĉm solves the following linear ODE:
0 = d

dt
Ĉm(t) +

(
(N −m)ĥm + r

)
Ĉm(t)

−(N −m)ĥmĈm+1(t)− κ, t ∈ [0, T ) ,

Ĉm(T ) = 1, 0 ≤ m < k ≤ N,

Ĉk(t) = R̂ ,

(50)

and V̂m solves the following nonlinear ODE:
0 = d

dt
V̂m(t) + max

π

(
r − π (N −m)∆̂m(t)ĥm

)
γV̂m(t)

+(N −m)(1 + λ̂)ĥm

(
[1 + π ∆̂m(t)]γV̂m+1(t)− V̂m(t)

)
, t ∈ [0, T ) ,

V̂m(T ) = 1
γ
, 0 ≤ m < k ≤ N,

V̂k(t) = 1
γ
erγ(T−t) .

(51)

where ĥm = â (α̂)m, and ∆̂m(t) = Ĉm+1(t)/Ĉm(t)− 1.

As a result, from the first order condition (31), we can explicitly solve for the optimal

investment strategy:

π̂∗m(t) :=

(
(1 + λ̂)V̂m+1(t)/V̂m(t)

) 1
1−γ − 1

∆̂m(t)
. (52)

The following proposition shows that the optimal long or short strategy is determined

by the sign of default risk premium.

Theorem 2 (Long/Short Strategy). Assume that all reference entities have identical

characteristics and that there is no external contagion risk. Further assume that κ ≥ rR̂.

Then the investor will optimally long/short the CLN if the default risk premium is

negative/positive, i.e., 
π̂∗m(t) > 0 if λ̂ ∈ (−1, 0) ,

π̂∗m(t) = 0 if λ̂ = 0 ,

π̂∗m(t) < 0 if λ̂ ∈ (0,∞) ,

where π̂∗m(t) is defined by (52).

This long/short strategy is a reminiscence of the classic Merton (1969)’s strategy

for the portfolio selection problem between risk-free bond and a risky stock, where the

investor will optimally long/short the stock if the risk premium is positive/negative.

Here, since a CLN is essentially a fixed income product, its default risk premium is

similar to that of a default bond, whose sign is negative for a positive compensation.
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The condition that κ ≥ rR̂ may be a little strange at the first glance. To see its

economic meaning, we can use it to derive that∫ ∞
0

κ e−rtdt ≥
∫ ∞

0

rR̂ e−rtdt = R̂ .

The above inequality essentially states that receiving the regular coupon payment is

more preferable than taking the one-time recovery compensation conditional on an

immediately termination of the CLN, which is a reasonable assumption in practice.

Now let’s end this section with the proof of Proposition 2.

Proof. We split the proof into two parts: (i) ∆̂m(t) < 0, (ii) (1 + λ̂)V̂m+1(t)/V̂m(t) < 1

if λ̂ ∈ (−1, 0), (1 + λ̂)V̂m+1(t)/V̂m(t) = 1 if λ̂ = 0, and (1 + λ̂)V̂m+1(t)/V̂m(t) > 1 if

λ̂ ∈ (0,∞), for 0 ≤ m ≤ k − 1.

Step (i). We claim that ∆̂m(t) < 0 or equivalently Ĉm(t) > Ĉm+1(t) > 0. Letting

τ = T − t, then the linear ODE (50) can be transformed to the following initial problem

d

dτ
Ĉm(τ) = fm(Ĉm, Ĉm+1, τ), Ĉm(0) = 1 , (53)

where

fm(Ĉm, Ĉm+1, τ) := (N −m)ĥm
(
Ĉm+1(τ)− Ĉm(τ)

)
+ κ− rĈm(τ) .

Next, we use a backward induction argument. Consider first the linear ODE (53)

when m = k − 1, where Ĉm+1(τ) = Ĉk(τ) = R̂. A simple calculation shows that

Ĉk(0) = R̂ < 1 = Ĉk−1(0), and

d

dt
Ĉk(τ) = 0 ≤ κ− rR̂ = f(Ĉk(τ), Ĉk(τ), τ) .

Hence, Ĉk(τ) is a subsolution of linear ODE (50) when m = k − 1. Consequently,

Ĉk−1(τ) > Ĉk(τ) = R̂ > 0, which is equivalent to that ∆̂k−1(t) < 0.

Now, suppose that the claim holds for m = k − 1, k − 2, · · · , l + 1, i.e., Ĉm(τ) >

Cm+1(τ) > 0, where l ≥ 0. Consider m = l and define W (τ) = Ĉm(τ)− Ĉm+1(τ). Then,

we have W (0) = 0, and

d

dτ
W (τ) = −

(
(N −m)ĥm + r

)
W (τ) + (N −m− 1)ĥm+1

(
Ĉm+1(τ)− Ĉm+2(τ)

)
.

Since Ĉm+1(τ) ≥ Ĉm+2(τ) by induction, we immediately obtain W (τ) = Ĉm(τ) −
Ĉm+1(τ) ≥ 0. As a consequence, ∆̂m(τ) < 0 when m = l. This completes the proof of

the Step (i).
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Step (ii). We claim that (1 + λ̂)V̂m+1(t)/V̂m(t) < 1 if λ̂ ∈ (−1, 0), and

(1 + λ̂)V̂m+1(t)/V̂m(t) > 1 if λ̂ ∈ (0,∞). To this end, we first plug the optimal π̂∗m
defined (52) into the equation (51) and change the variable by τ = T − t, which yields

that

d

dτ
V̂m(τ) = gm(V̂m(τ), V̂m+1(τ), τ) , V̂m(0) =

1

γ
, (54)

where

gm(V̂m(τ), V̂m+1(τ), τ) =
(
rγ − (N −m)λ̂ ĥm

)
V̂m(τ)

+(N −m)(1− γ)ĥm

([
(1 + λ̂)

V̂m+1(τ)

V̂m(τ)

] 1
1−γ − 1

)
V̂m(τ) ,

for 0 ≤ m < k ≤ N . Next, consider three subcases: (a) λ̂ ∈ (−1, 0), (b) λ̂ = 0, and (c)

λ̂ ∈ (0,∞).

(a) When λ̂ ∈ (−1, 0), we claim that V̂m(τ) > (1 + λ̂)V̂m+1(τ) > 0. We again use a

backward induction argument. Consider first m = k − 1. Then, V̂k(τ) = 1
γ
erγτ and

d

dτ
(1 + λ̂)V̂k(τ) = rγ(1 + λ̂)Vk(τ)

≤
(
rγ − (N −m)λ̂ ĥm

)
(1 + λ̂)V̂k(τ)

= gm

(
(1 + λ̂)V̂k(τ), V̂m+1(τ), τ

)
,

since λ̂ < 0. In addition,

(1 + λ̂)V̂k(0) =
1 + λ̂

γ
≤ 1

γ
= V̂m(0) .

Consequently, (1 + λ̂)V̂k(τ) is a subsolution of the ODE (54), which leads to V̂m(τ) >

(1 + λ̂)V̂m+1(τ) > 0 when m = k − 1. The above method can be also applied to the case

where m < k − 1. Hence we obtain that when λ̂ ∈ (−1, 0), V̂m(t) > (1 + λ̂)V̂m+1(t) > 0.

Combing the result in Step (i) that ∆̂m(t) < 0, we have π̂∗m(t) > 0 when λ̂ ∈ (−1, 0).

Next, we turn to the subcases (b) and (c). Following the same arguments as in

subcase (a), we obtain that (1 + λ̂)V̂m+1(t) is a supersolution of the ODE (54) when

λ̂ ∈ (0,∞), which leads to (1 + λ̂)V̂m+1(t) ≥ V̂m(t). On the other hand, it is easy to

see that 0 is a subsolution of the ODE (54). Hence, we obtain the require inequalities.

Combing the result in Step (i) that ∆̂m(t) < 0, we have π̂∗m(t) < 0 when λ̂ ∈ (0,∞).

Finally, the inequalities become equalities when λ̂ = 0. This completes the proof.
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6 Numerical Analysis

In this section, we turn to an extensive numerical analysis to the portfolio selection

problem with a kth-to-default CLN. To focus on the effect of multiple-default protection,

we begin with the symmetric case with neither internal nor external contagion risks.

Then, we investigate the impact of internal and/or one-time external contagion risks.

Some additional results are presented in Appendix A.

6.1 Baseline Parameter Values

Table 1: Baseline Parameter Values

Parameter Name Symbol Value

risk aversion factor γ 0.5

risk free rate r 0.03

investment horizon T 0.9

maturity of CLN T 1

number of reference entities N 10

number of default protection k 4

coupon rate κ 0.1

recovery rate R̂ 0.4

base default intensity â 0.2

intensity of external shock a0 0.05

internal contagion risk factor α̂ 1

external contagion risk α0 1

default risk premium λ̂ −0.5

risk premium of the external shock λ0 −0.5

For easy exposition and comparison, we consider a symmetric case with N = 10

reference entities and k = 4 default protections. Other parameter values are specified

as follows. Following Bo and Capponi (2016), we set the risk-free rate r = 0.03, an

investor’s risk aversion parameter γ = 0.5, the investment horizon T = 0.9 year, the

maturity of the CLN T = 1 year, the default risk premium λ̂ = −0.5. Following Jiang,

Qian, and Yuan (2017), we assume that the coupon rate κ = 0.1, the recovery rate
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R̂ = 0.4. The base default intensity is fixed at â = 0.2, which is used in Leung and

Yue (2009). For the one-time external shock, as we want to intentionally model it as a

rare event such as a financial crisis, the intensity of the external shock is assumed to

be small a0 = 0.05 also used in Leung and Yue (2009). That is, it will take about 20

years on average to have an external shock. For simplicity, the associated external risk

premium factor λ0 is assumed to have the same level as the default risk premium, i.e.,

λ0 = λ̂ = −0.5. Finally, we rule out both internal and external contagion risks at this

moment so that α̂ = α0 = 1. For easy reference, all these parameter values are collected

in Table 1.

We first examine the optimal investment strategies.

6.2 Optimal Investment Strategies

Recall that there are total k default protections for N reference entities. Once there are

m ≤ k defaults, only N −m entities alive in the reference pool. Hence, π̂∗m stands for the

optimal investment in the CLN when m defaults have already occurred. That is, there

are N −m default protections remaining. In Figure 2, we plot the optimal investment

strategies π̂∗m and the proportional jump sizes of the CLN ∆̂m for three sets of parameter

values: (a) the baseline parameter values (i.e., N = 10, k = 4, and R̂ = 0.4), (b) a low

scale of reference pool (i.e., N = 6, k = 4, and R̂ = 0.4), and (c) a low recovery rate

(i.e., N = 10, k = 4, and R̂ = 0.05). Other parameter values are documented in Table 1.

Several interesting observations are in order.

First, consisting with our theoretical results in Proposition 2, the investor will always

take long positions (i.e., π̂∗m > 0 for all m) when the default risk premium parameter

is negative (i.e., λ̂ = −0.5 meaning a positive risk compensation for a fixed income

product) as illustrated in Panels A1, A2, and A3, where the dashed, dotted, dash-dotted,

and solid lines plot the optimal investment strategies π̂∗m when m defaults have already

occurred for m = 0, 1, 2, and 3, respectively. In Figure 6 in Appendix A, we also plot

the optimal investment strategies when λ̂ = 0 and λ̂ = 0.5 to further verify the results

in Proposition 2.

Second, the optimal investment strategy is monotonically decreasing with respect to

the investment horizon when there is only one default protection remaining as presented

by the solid line (i.e., π̂∗3) in Panel A1 of Figure 2. Intuitively, as the investment horizon

becomes shorter, the expected income from the coupon payment decreases, and the

expected default loss is thereby increasing, which is measured by ∆̂3 in Panel A2 of
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Figure 2: The optimal investment strategies π̂∗m and the jumps ∆̂m with respect to the
investment horizon. In Panels A1, B1, and C1, the dashed, dotted, dash-dotted, and solid lines
plot the optimal investment strategies π̂∗m when m defaults have already occurred for m = 0, 1, 2, and
3, respectively. In Panels A2, B2, and C2, the dashed, dotted, dash-dotted, and solid lines plot the
proportional jump sizes of the CLN ∆̂m when m defaults have already occurred for m = 0, 1, 2, and
3, respectively. Panels A1 and A2 are for our baseline case, Panels B1 and B2 are for the case with a
small scale of reference pool (i.e., N = 6), and Panels C1 and C2 are for the case with a small recovery
rate (i.e., R̂ = 0.05). Other parameter values are listed in Table 1.

Figure 2. As a result, the investor will invest less in the CLN to reduce her risk exposure

as the investment horizon becomes short. This result for π̂∗3 is robust for a low scale of

reference pool and/or a low recovery rate as illustrated by the solid lines in Panels B1

and C1.
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Third, the optimal investment strategies may be non-monotonic when there are

multiple default protections; see the dashed, dotted, and dot-dashed lines for π̂∗m for

m = 0, 1, and 2 in Panel A1. For a short investment horizon, the investor will take a

more aggressive strategy by investing more in the CLN, which is in a sharp contrast to

the decreasing pattern of investment for the last default protection case. This is because

an extra default protection significantly reduces the expected default loss when the

investment horizon is short as measured by ∆̂m for m = 0, 1, 2 in Panel A2 of Figure 2.

For a long investment horizon, however, this increasing pattern of π̂∗m will become weak

or even reversed. The reasons are as follows. On one hand, as the investment horizon

increases, the marginal value of an additional default protection tends to decrease. And

this effect is more salient especially when the scale of reference pool is large. On the

other hand, when the investment horizon is sufficiently long (e.g., t < 0.1) and the

remaining number of default protections is small (e.g., π̂2), the investor is more likely

to obtain a recovery compensation of the CLN. If the recovery rate R̂ is sufficiently

large, this compensation can generate a decreasing pattern of the expected loss as the

investment horizon increases; see the dashed line (i.e., ∆̂2) in Panel A2 for illustration.

Consequently, this may in turn lead to more investments in the CLN as indicated by the

dashed line (i.e., π̂2) in Panel A1.

Fourth, an additional default protection may not lead to a more investment in the

CLN when the investment horizon is long. In particular, Panel A1 shows that the optimal

investment strategy with one default protection π̂∗3 (the solid line) is higher than those

with multiple default protections at the early stage of the investment (i.e., t < 0.1). This

is because, compared to the case with multiple default protections, the expected default

compensation is highest for the last default protection case. Or equivalently, the expected

loss from default is small as measured by ∆̂m in Panel A2. Two key factors have critical

impacts on this expected recovery compensation. The first is the likelihood of default.

When the scale of the reference pool is small, ceteris paribus, the default probability will

also be small, which in turn leads to a small expected recovery compensation. Panel

B2 shows that when the scale of reference pool reduces to N = 6 from N = 10, the

expected loss is largest for ∆̂3. Hence, the investor will invest least in the CLN when

there is only one default protection remaining as illustrated by π̂∗3 in Panel B1. The other

factor is the recovery rate. A lower recovery rate naturally results in a lower expected

value of recovery compensation. In Panel C1, we can also generate a lowest investment
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strategy π̂∗3 among all investment strategies by intentionally decreasing the recovery rate

to R̂ = 0.05 from R̂ = 0.4. Panel C2 also confirms that ∆̂3 is the largest loss.

In sum, the optimal investment strategy is essentially determined by a risk-return

tradeoff. When the investment horizon is short, the extra protection plays a dominant role

and gives the investor a strong incentive to invest more in the CLN. When the investment

horizon is long, the expected recovery compensation becomes more important and the

situation is much more complicated. The investor needs to do a careful calculation to

balance the risk and return.

Next, we turn to measuring values of default protections.

6.3 Values of Default Protections

To further quantify the value of an additional default protection, we define the propor-

tional certainty equivalent wealth εN,k as follows:

v(0, w,0;N, k + 1) = v(0, w(1 + εN,k),0;N, k) , (55)

where v(·;N, k) is the value function defined in (22) when there is a kth-to-default CLN

with N reference entities. Intuitively, εN,k is the proportional compensation of initial

wealth for an investor to forgive an additional default protection when there are k default

protections for the N reference entities. By homogeneity and symmetry, εN,k in (55) can

be expressed more explicitly

εN,k =
( V̂0(0;N, k + 1)

V̂0(0;N, k)

) 1
γ − 1 ,

where V̂0(·;N, k) is the reduced value function defined in (49) when there is a kth-to-

default CLN with N reference entities.

In Figure 3, Panel A plots εN,k with respect to the number of reference entities N

when the current number of default protections is fixed at k = 1. Other parameter

values are reported in Table 1. Quantitatively, εN,k increases sharply from about 1%

to over 18% when the number of reference entities N increases from 2 to 10. That is,

when there are 10 reference entities, the investor will need more than 18% initial wealth

compensation to forgive the second default protection. In contrast, the value of an

additional default protection drops dramatically from about 19% to almost zero when

the number of existing default protection k increases from 1 to 9 as illustrated by Panel

B in Figure 3.

So far, we have only considered the case with multiple default protections, we next

investigate the impact of internal contagion risks on the optimal investment strategies.
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Figure 3: Value of an additional default protection εN,k. Panel A plots εN,k with respect
to the number of reference entities N when the current number of default protections is fixed at k = 1.
Panel B plots εN,k with respect to the number of default protections k when the number of reference
entities is fixed at N = 10. Other parameter values are listed in Table 1.

6.4 Internal Contagion Risk

In each panel of Figure 4, the dashed, solid, and the dotted lines are the optimal

investment strategies π̂∗m for the cases with negative (α̂ = 0.8), zero (α̂ = 1), and positive

(α̂ = 1.2) internal contagion risks, respectively. Other parameter values are documented

in Table 1.

Common wisdom may suggest that when there is a positive internal contagion

risk (i.e., α̂ > 1), the investor should take a more conservative investment strategy

by investing less in the CLN than the case without internal contagion risks. Panel A

confirms this intuition when there are four default protections remaining as the dotted

line (i.e., α̂ = 1.2) is lower than the other two lines (i.e., α̂ = 1 and α̂ = 0.8). However,

as the number of default protections decreases, the above intuition no longer holds.

More concretely, in Panel B, the dotted line (α̂ = 1.2) is above the solid line (α̂ = 1)

at the early stage of investment (i.e., t < 0.1). Panel C plots the case with two default

protections remaining, where the dotted line (α̂ = 1.2) is above the solid line (α̂ = 1)

for an even longer early stage (i.e., t < 0.5). And, the solid line (α̂ = 1) is also above

the dashed line (α̂ = 0.8) when t < 0.2. More interesting, Panel D shows that a reverse

result holds when there is only one default protection remaining. That is, the investor

will put more wealth in the CLN when there is a positive internal contagion risk. The

reason is again due to the risk-return tradeoff. For a positive contagion risk (i.e., α̂ > 1),

the default intensity will increase quickly from the base level â to the new one â (α̂)m

after m defaults. A higher default intensity leads to a higher expected risk compensation
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Figure 4: The optimal investment strategies π̂∗m with respect to internal contagion
risk. In each panel of Figure 4, the dashed, solid, and the dotted lines are the optimal investment
strategies π̂∗m for the cases with negative (α̂ = 0.8), zero (α̂ = 1), and positive (α̂ = 1.2) internal
contagion risks, respectively. Other parameter values are documented in Table 1.

especially for a long investment horizon, which attracts the investor to invest more in

the CLN.

Next, we examine the impact of a one-time external shock, which may have some

contagion risks to the reference entities.

6.5 External Contagion Risk

To isolate the effect of external contagion risk, we turn off the internal contagion risk

by setting α̂ = 1. Other parameter values are documented in Table 1. In each panel of

Figure 5, the dashed, solid, and the dotted lines are the optimal investment strategies

π̂∗m for the cases with negative (α0 = 0.2), zero (α0 = 1), and positive (α0 = 1.8) external

contagion risks, respectively.

On one hand, comparing Figures 4 and 5, the impact of external contagion risk is

qualitatively similar to the impact of internal contagion risk analyzed in the previous

subsection. That is, for a positive external contagion risk (i.e., α0 > 1), the investor will
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Figure 5: The optimal investment strategies π̂∗m with respect to external contagion
risk. In each panel of Figure 5, the dashed, solid, and the dotted lines are the optimal investment
strategies π̂∗m for the cases with negative (α0 = 0.2), zero (α0 = 1), and positive (α0 = 1.8) external
contagion risks, respectively. Other parameter values are documented in Table 1.

take a more conservative investment strategy in the CLN when the external contagion

risk is large and the number of default protections is large as illustrated by Panels A

and B of Figure 5. However, when the number of default protections decreases, the

expected compensation of default increases especially for a long investment horizon.

This increasing compensation gives the investor a strong incentive to increase the wealth

allocation in the CLN especially at the early stage of investment. This is why the dotted

lines (α0 = 1.8) are above the other two lines (α0 = 1 and α0 = 0.2) when the investment

horizon is sufficiently long in Panels C and D.

On the other hand, as the external shock is a one-time shock, its quantitative impact

is relatively small compared to the internal contagion risk. Interestingly, from Figure

5, we find that the differences between the dotted lines (α0 = 1.8) and the solid lines

(α0 = 1) become weak as the number of default protections decreases. This implies

that the impact of the positive contagion risk (α0 = 1.8) decreases as the number

of default protection decreases. In contrast, the reverse result holds for the negative
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contagion risk (α0 = 0.2). More concretely, the differences between the dashed lines

(α0 = 0.2) and the solid lines (α0 = 1) become strong as the number of default protections

decreases. The intuition is as follows. When the number of default protection is large,

the early termination probability of the CLN is already small. Then the negative external

contagion risk (α0 < 1), which may further reduce the default probability, has a small

marginal impact for the investor. But this marginal impact will increase as the number

of default protection decreases.

7 Conclusion

In this paper, we consider a portfolio selection problem of a power utility investor who

optimally allocates her wealth between a risk-free bond and a kth-to-default Credit-

Linked Note. In addition to multiple default protections, the CLN may have both internal

and external contagion risks. The value of the CLN and its dynamics are obtained

under a Markov chain model. By the dynamical programming principle, we characterize

the value function as a unique classic solution to a system of Hamilton-Jacobi-Bellman

equations, each of which is associated with a default or shock realization state. The

optimal strategy is to make the current marginal value of wealth equal the weighted

average of the risk-adjusted marginal value of wealth conditional on a default or shock

realization, where the weight is determined jointly by the jump size and intensity of CLN.

When all reference entities have the same characteristics and the external contagion

risk is absent, we prove that the investor will take long/short positions in the CLN if

the default risk compensation is positive/negative. Numerically, we find the multiple-

default protection has a significant impact on optimal investment strategies. For a short

investment horizon, an additional default protection leads to more investments in the

CLN. However, for a long investment horizon, the CLN’s early termination compensation

becomes more important and may make additional default protection less attractive.

This difference between short and long horizons is more salient in the presence of internal

and/or external contagion risks.
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A Additional Results

In this section, we provide some further numerical results regarding the impacts of other

factors to the optimal investment strategies. We begin with the discussion of default

risk premium.

A.1 Impact of Default Risk Premium
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Figure 6: The optimal investment strategies π̂∗m with respect to default risk premium
λ̂. In each panel of Figure 6, the dashed, solid, and the dotted lines are the optimal investment
strategies π̂∗m for risk aversions λ̂ = −0.5, λ̂ = 0, and λ̂ = 0.5, respectively. Other parameter values are
documented in Table 1.
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As prediction in Proposition 2, the sign of default risk premium factor λ̂ uniquely

determines the direction of the investment in the CLN. In each panel of Figure 6, we

confirm the theory by numerically plotting the optimal investment strategies π̂m for

λ̂ = −0.5 (the solid lines), λ̂ = 0 (the dotted lines), and λ̂ = 0.5 (the dashed lines),

respectively. Other parameter values are summarized in Table 1.

A.2 Impact of Risk Aversion
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Figure 7: The optimal investment strategies π̂∗m with respect to risk aversions. In each
panel of Figure 7, the dashed, solid, and the dotted lines are the optimal investment strategies π̂∗m for
risk aversions γ = 0.2, γ = 0.5, and γ = 0.8, respectively. Other parameter values are documented in
Table 1.

Note that 1 − γ is the investor’s relative risk aversion. Intuitively, as the investor

becomes more risk averse, she would invest less in the CLN. This is also verified by

our numerical example in Figure 7. To be more precise, in each panel of Figure 7, the

dashed, solid, and the dotted lines plot the optimal investment strategies (i.e., π̂) for

γ = 0.2, γ = 0.5, and γ = 0.8, respectively. It is clear that the investment strategy is

monotonically decreasing as the risk aversion 1− γ increases.
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B The value of the kth-to-default CLN

Rewrite Cκ(t,H(t)), Ci(t,H(t)), i ∈ I \M(z) and CL(t,H(t)) as

Cκ(t,H(t)) = E

 ∑
M1⊂I\M,

|M1|≤k−1−|M|

∫ T

t

∏
m∈M1

n∈I\{M∪M1}

Hm(u) (1−Hn(u)) e−r(u−t)κdu

∣∣∣∣∣Gt
 ,

Ci(t,H(t)) = E

 ∑
M2⊂I\{M∪{i}}
|M2|=k−1−|M|

∏
m∈M2

n∈I\{M∪M2∪{i}}

Hm(τi)(1−Hn(τi))Hi(T ) e−
∫ T
t r(1−Hi(u))duRi

∣∣∣∣∣Gt
 ,

CL(t,H(t)) = E

 ∑
M3⊂I\M,

|M3|≤k−1−|M|

∏
m∈M3

n∈I\{M∪M3}

Hm(T )(1−Hn(T )) e−r(T−t)

∣∣∣∣∣Gt
 ,

We consider two cases where external Shock occurs and does not occur.

Case 1. The external shock has realized.

We use a recursive method to derive the equations satisfied by the functions Cκ(t, z),

Ci(t, z) (i ∈ I \M(z) and CL(t, z) respectively.

For Cκ(t, z). Step 1. When |M(z)| = k − 1. According to the Feynman-Kac formula,

the function Cκ(t, z) satisfies
dCκ(t, z)

dt
+

∑
j∈I\M(z)

(Cκ(t, zj)− Cκ(t, z))hj(z) + κ = rCκ(t, z),

Cκ(T , z) = 0,

where Cκ(t, zj) = 0, j ∈ I \M(z).

Therefore,

Cκ(t, z) = κ

∫ T

t

e−
∫ u
t (r+

∑
j∈I\M(z) hj(z))dsdu. (B–56)

Step 2. When |M(z)| < k − 1, the function Cκ(t, z) satisfies
dCκ(t, z)

dt
+

∑
j∈I\M(z)

(Cκ(t, zj)− Cκ(t, z))hj(z) + κ = rCκ(t, z),

Cκ(T , z) = 0,

where Cκ(t, zj) can be obtained from the condition that |M(z)|+ 1, j ∈ I \M(z).

Therefore,

Cκ(t, z) =

∫ T

t

(
κ+

∑
j∈I\M(z)

hj(z)Cκ(u, zj)

)
e−

∫ u
t (r+

∑
j∈I\M(z) hj(z))dsdu. (B–57)
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For Ci(t, z). Step 1. When |M(z)| = k − 1. If i ∈ M(z), Ci(t, z) = 0. If i /∈ M(z),

the function Ci(t, z) satisfies
dCi(t, z)

dt
+

∑
j∈I\M(z)

(Ci(t, zj)− Ci(t, z))hj(z) = rCi(t, z),

Ci(T , z) = 0,

where

Ci(t, zi) = Ri,

Ci(t, zj) = 0, j ∈ I \ (M(z) ∪ {i}).

Therefore, we have

Ci(t, z) = Ri

∫ T

t

hi(z)e−
∫ u
t (r+

∑
j∈I\M(z) hj(z))dsdu. (B–58)

Step 2. When |M(z)| < k − 1. If i ∈ M(z), Ci(t, z) = 0. If i /∈ M(z), the function

Ci(t, z) satisfies
dCi(t, z)

dt
+

∑
j∈I\M(z)

(Ci(t, zj)− Ci(t, z))hj(z) = rCi(t, z),

Ci(T , z) = 0,

where Ci(t, zi) = 0, Ci(t, zj) can be obtained from the condition that |M(z)| + 1,

j ∈ I \ (M(z) ∪ {i}).
Therefore, we have

Ci(t, z) =
∑

j∈I\{M(z)∪{i}}

∫ T

t

hj(z)Ci(u, zj)e−
∫ u
t (r+

∑
j∈I\M(z) hj(z))dsdu. (B–59)

For CL(t, z). Step 1. When |M(z)| = k − 1, the function CL(t, z) satisfies
dCL(t, z)

dt
+

∑
j∈I\M(z)

(CL(t, zj)− CL(t, z))hj(z) = rCL(t, z),

CL(T , z) = 1,

where CL(t, zj(t)) = 0, , j ∈ I \M(z).

Therefore,

CL(t, z) = e−
∫ T
t (r+

∑
j∈I\M(z) hj(z))du. (B–60)
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Step 2. When |M(z)| < k − 1, CL(t, z) satisfies
dCL(t, z)

dt
+

∑
j∈I\M(z)

(CL(t, zj)− CL(t, z))hj(z) = rCL(t, z),

CL(T , z) = 1,

where CL(t, zj) can be obtained from the condition that |M(z)|+ 1, j ∈ I \M(z).

Therefore,

CL(t, z) =e−
∫ T
t (r+

∑
j∈I\M(z) hj(z))du

+
∑

j∈I\M(z)

∫ T

t

hj(z)CL(u, zj)e−
∫ u
t (r+

∑
j∈I\M(z) hj(z))dsdu. (B–61)

Case 2. The external shock does not realize.

For Cκ(t, z). Step 1. When |M(z)| = k − 1, Cκ(t, z) satisfies
dCκ(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(Cκ(t, zj)− Cκ(t, z))hj(z) + κ = rCκ(t, z),

Cκ(T , z) = 0,

where Cκ(t,Hj(t)) = 0, j ∈ I \M(z), Cκ(t, z0) has been obtained.

Therefore,

Cκ(t, z) =

∫ T

t

(
κ+ h0(z)Cκ(u, z0)

)
e−

∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–62)

Step 2. When |M(z)| < k − 1, the function Cκ(t, z) satisfies
dCκ(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(Cκ(t, zj)− Cκ(t, z))hj(z) + κ = rCκ(t, z),

Cκ(T , z) = 0,

where Cκ(t, zj) j ∈ I \M(z) and Cκ(t, z0) have been obtained.

Therefore, we can obtain

Cκ(t, z) =

∫ T

t

κ+
∑

j∈I∪{0}\M(z)

Cκ(u, zj)hj(z)

 e−
∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–63)

For Ci(t, z). Step 1. When |M(z)| = k − 1. If i ∈ I \ M(z), Ci(t, z) = 0. If

i /∈ I \M(z), Ci(t, z) satisfies
dCi(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(Ci(t, zj)− Ci(t, z))hj(z) = rCi(t, z),

Ci(T , z) = 0,
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where Ci(t, zi) = Ri, Ci(t, zj) = 0, j ∈ I \ (M(z) ∪ {i}), Ci(t, z0) has been obtained.

Therefore,

Ci(t, z) =

∫ T

t

(
Rihi(z) + h0(z)Ci(u, z0)

)
e−

∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–64)

Step 2. When |M(z)| < k − 1. If i ∈ I \M(z), Ci(t, z) = 0. If i /∈ I \M(z), the

function Ci(t, z) satisfies
dCi(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(Ci(t, zj)− Ci(t, z))hj(z) = rCi(t, z),

Ci(T , z) = 0,

where Ci(t, zi) = 0, Ci(t, zj) (j ∈ I \M(z)) and Ci(t, z0) have been obtained.

Therefore,

Ci(t, z) =
∑

j∈I∪{0}\{M(z)∪{i}}

∫ T

t

hj(z)Ci(u, zj)e−
∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–65)

For CL(t, z). Step 1. When |M(z)| = k − 1, the function CL(t, z) satisfies
dCL(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(CL(t, zj)− CL(t, z))hj(z) = rCL(t, z),

CL(T , z) = 1,

where CL(t,Hj(t)) = 0, j ∈ I \M(z). CL(t, z0) has been obtained.

Therefore,

CL(t, z) =e−
∫ T
t (r+

∑
j∈I∪{N+1}\M(z) hj(z))du

+

∫ T

t

h0(z)CL(u, z0)e−
∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–66)

Step 2. When |M(z)| < k − 1, CL(t, z) satisfies
dCL(t, z)

dt
+

∑
j∈I∪{0}

(1− zj)(CL(t, zj)− CL(t, z))hj(z) = rCL(t, z),

CL(T , z) = 1,

where CL(t, zj) (j ∈ I \M(z)) and CL(t, z0) have been obtained.

Therefore,

CL(t, z) =e−
∫ T
t (r+

∑
j∈I∪{0}\M(z) hj(z))du

+
∑

j∈I∪{0}\M(z)

∫ T

t

hj(z)CL(t, zj)e−
∫ u
t (r+

∑
j∈I∪{0}\M(z) hj(z))dsdu. (B–67)
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By (B–56)-(B–67), we obtain the explicit expression of the value of the kth-to-default

CLN,

C(t, z) = Cκ(t, z) +
∑

i∈I\M(z)

Ci(t, z) + CL(t, z).

C Proof of Proposition 2

The calculation process is divided into two parts: the first step is to calculate the dynamic

of C(t,H(t)), and the second step is to calculate the dynamic of C̃(t,H(t)).

Step 1. According to the Ito formula, Ci(t,H(t)) i ∈ I \M(H(t)) satisfy

dCi(t,H(t))

=
∂Ci(t,H(t−))

∂t
dt+

∑
j∈I∪{0}\M(H(t))

(
Ci(t,Hj(t−))− Ci(t,H(t−))

)
dHj(t)

=
∂Ci(t,H(t−))

∂t
dt+

∑
j∈I∪{0}\M(H(t))

(
Ci(t,Hj(t−))− Ci(t,H(t−))

)
(1−Hj(t−))hj(H(t−))dt

+
∑

j∈I∪{0}\M(H(t))

(
Ci(t,Hj(t−))− Ci(t,H(t−))

)
dξj(t)

=r(1−Hi(t−))Ci(t,H(t−))dt+
∑

j∈I∪{0}\M(H(t))

(
Ci(t,Hj(t−))− Ci(t,H(t−))

)
dξj(t).

(C–68)

Similarly, we have

dCκ(t,H(t)) =rCκ(t,H(t))dt− κdt

+
∑

j∈I∪{0}\M(H(t))

(
Ci(t,Hj(t−))− Ci(t,H(t−))

)
dξj(t), (C–69)

and

dCL(t,H(t))

=rCL(t,H(t))dt+
∑

j∈I∪{0}\M(H(t))

(
CL(t,Hj(t−))− CL(t,H(t−))

)
dξj(t). (C–70)

According to (C–68)-(C–70), it holds that

dC(t,H(t))

=

( ∑
j∈I\M(H(t))

r(1−Hj(t−))Cj(t,H(t−)) + rCκ(t,H(t−)) + rCL(t,H(t−))− κ

)
dt
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+
∑

j∈I∪{0}\M(H(t))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξj(t). (C–71)

Step 2.

C̃(t,H(t)) =1{|M(H(t))|≤k−1}C(t,H(t))

=

( ∑
M⊂I
|M|≤k−1

∏
m∈M
n∈I\M

Hm(t)(1−Hn(t))

)
C(t,H(t))

When |M(H(t))| ≤ k − 1,

C̃(t,H(t)) =

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
C(t,H(t)).

We calculate C̃(t,H(t)) in two cases.

Case 1. The external shock has occurred.

dC̃(t,H(t))

=d

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
C(t,H(t))

=C(t,H(t))d

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)

+

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
dC(t,H(t))

+ ∆

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
∆C(t,H(t))

=
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))C(t,H(t−))dHj(t)

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
C(t,H(t−))

∑
j∈I\M(H(t))

dHj(t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
rC(t,H(t))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,Hj(t−))dHj(t)
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−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t)

+
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))

×
(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t)

−

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t))

(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t)

=

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t)

+
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))C(t,Hj(t−))dHj(t).

• If |M(H(t))| = k − 1,

dC̃(t,H(t))

=

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t). (C–72)

• If |M(H(t−))| < k − 1. Assume j ∈ I \M(H(t)) default,∏
m∈M(H(t))∪{j}

n∈I\(M(H(t))∪{j})

Hm(t) (1−Hn(t))C(t,H(t))

has a jump

∆ =

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t−)(1−Hn(t−))

)
C(t,Hj(t−))∆Hj(t).
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Therefore, we have

dC̃(t,H(t))

=

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
rC(t,H(t−))− κ

)
dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξj(t). (C–73)

Case 2. The external shock does not occur.

dC̃(t,H(t))

=d

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
C(t,H(t))

=C(t,H(t))d

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)

+

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
dC(t,H(t))

+ ∆

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)
∆C(t,H(t))

=
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))C(t,H(t−))dHj(t)

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
C(t,H(t−))

∑
j∈I\M(H(t−))

dHj(t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t)(1−Hn(t−))

)

×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,Hj(t−))dHj(t)

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t)
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+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξ0(t)

+
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))

×
(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t)

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t)

=

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξ0(t)

+
∑

j∈M(H(t−))

( ∏
m∈M(H(t−))\{j}
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(1−Hj(t−))C(t,Hj(t−))dHj(t).

• If |M(H(t−))| < k − 1,

dC̃(t,H(t))

=

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t)(1−Hn(t))

)(
rC(t,H(t))− κ

)
dt

+

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξj(t)

+

( ∏
m∈M(H(t))
n∈I\M(H(t))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξ0(t) . (C–74)

• If |M(H(t−))| = k − 1,

dC̃(t,H(t))

=

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
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×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξj(t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξ0(t). (C–75)

By further calculation, we can obtain the Q-dynamics of the kth-to-default CLN value.

D Proof of Proposition 4

The calculation process is also divided into two cases: one where an external shock

occurs and one where no external shock occurs.

Case 1. The external shock has realized.

dWt(φ)

=φ(t−)
(
dC̃(t,H(t)) + dDt

)
+ φB(t)dBt

=φ(t−)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(rC(t,H(t−))− κ) dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

) (
hPj (H(t−))− hj(H(t−))

)
dt

)

+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))

)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξPj (t)
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−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))
(
hPj (H(t−))− hj(H(t−))

)
dt

))

+ φ(t−)

(
1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

RjdHj(t)

)

+ 1|M(H(t−))|≤k−1

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
κdt

)

+ rφB(t)Btdt

=φ(t−)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

) (
hPj (H(t−))− hj(H(t−))

)
dt

)

+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))
)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(Rj − C(t,H(t−))) dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

Rjh
P
j (H(t−))dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))
(
hPj (H(t−))− hj(H(t−))

)
dt

))

+ rφ(t)CLNtdt+ rφB(t)Btdt

=rWtdt

+ φ(t)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

)
dt
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+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

)

+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

( ∑
j∈I\M(H(t−))

(
Rj − C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

))
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(Rj − C(t,H(t−))) dξPj (t)

))
=rWtdt

+ 1{|M(H(t−))|≤k−1}φ(t)

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

)
dt

+ 1{|M(H(t−))|≤k−1}φ(t−)

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t).

We can rewrite the dynamic with jumps,

dWt(φ)

=

(
rWt − 1{|M(H(t−))|≤k−1}φ(t)

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
hj(H(t−))

)
dt

+ 1{|M(H(t−))|≤k−1}φ(t−)

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t). (D–76)

Since

π(t) =
φ(t)C̃(t,H(t))

Wφ(t)
,
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we can obtain

dWt

=

(
rWt + 1{|M(H(t−))|≤k−1}πtWt

∑
j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
λjhj(H(t−))

)
dt

+ 1{|M(H(t−))|≤k−1}πt−Wt−
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
dξPj (t)

=

(
rWt − 1{|M(H(t−))|≤k−1}πtWt

∑
j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
hj(H(t−))

)
dt

+ 1{|M(H(t−))|≤k−1}πt−Wt−
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
dHj(t). (D–77)

Step 2. The external shock does not realize.

dWt(φ)

=φ(t−)
(
dC̃(t,H(t)) + dDt

)
+ φB(t)dBt

=φ(t−)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
(rC(t,H(t−))− κ) dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
×
(
hPj (H(t−))− hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

)

+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
rC(t,H(t−))− κ−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))
)
dt
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−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

C(t,H(t−))dξPj (t)

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

C(t,H(t−))
(
hPj (H(t−))− hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

))

+ φ(t−)

(
1{|M(H(t−))|≤k−1}κ dt+ 1{|M(H(t−))|=k−1}

∑
j∈I\M(H(t−))

Rj dHj(t)

)
+ rφB(t)Btdt

=φ(t−)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

)

+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)
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×
(
−

∑
j∈I\M(H(t−))

C(t,Hj(t−))hj(H(t−))
)
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
Rj − C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

Rjh
P
j (H(t−))dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

C(t,H(t−))
(
hPj (H(t−))− hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

))
+ rφ(t)CLNtdt+ rφB(t)Btdt

=rWtdt

+ φ(t)

(
1{|M(H(t−))|<k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

)
dt

+

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

)
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+ 1{|M(H(t−))|=k−1}

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

( ∑
j∈I\M(H(t−))

(
Rj − C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

))
dt

−

( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

) ∑
j∈I\M(H(t−))

(
Rj − C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

)
dt

))
=rWtdt

+ 1{|M(H(t−))|≤k−1}

(
φ(t)

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)(
hPj (H(t−))− hj(H(t−))

)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)(
hP0(H(t−))− h0(H(t−))

))
dt

+ φ(t−)

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dξPj (t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×

(
C(t,H0(t−))− C(t,H(t−))

)
dξP0 (t)

))
.

The dynamic process with jumps is as follows,

dWt(φ)
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=

(
rWt − 1{|M(H(t−))|≤k−1}φ(t)

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
hj(H(t−))

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)
h0(H(t−))

))
dt

+ 1{|M(H(t−))|≤k−1}φ(t−)

(( ∏
m∈M(H(t−))
n∈I\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
∑

j∈I\M(H(t−))

(
C(t,Hj(t−))− C(t,H(t−))

)
dHj(t)

+

( ∏
m∈M(H(t−))

n∈I∪{0}\M(H(t−))

Hm(t−)(1−Hn(t−))

)

×
(
C(t,H0(t−))− C(t,H(t−))

)
dH0(t)

)
. (D–78)

So, we have,

dWt(π)

=

(
rWt − 1{|M(H(t−))|≤k−1}π(t)Wt

( ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
hj(H(t−))

+

(
C(t,H0(t−))

C(t,H(t−))
− 1

)
h0(H(t−))

))
dt

+ 1{|M(H(t−))|≤k−1}π(t−)Wt−

( ∑
j∈I\M(H(t−))

(
C(t,Hj(t−))

C(t,H(t−))
− 1

)
dHj(t)

+

(
C(t,H0(t−))

C(t,H(t−))
− 1

)
dH0(t)

)
. (D–79)

By the further calculation, we can obtain (19).
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